LITTLE WHITE OAK CREEK STREAM RESTORATION

POLK COUNTY, NORTH CAROLINA

CONTRACT # D06027-B

Prepared For:

Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

ANNUAL MONITORING REPORT (YEAR 3 OF 5)

DECEMBER 2010

LITTLE WHITE OAK CREEK STREAM RESTORATION

POLK COUNTY, NORTH CAROLINA

CONTRACT # D06027-B

Prepared For:

Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

ANNUAL MONITORING REPORT (YEAR 3 OF 5)

DECEMBER 2010

Owner

NCDENR Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

EEP Project Manager: Guy Pearce Phone: (919) 715-1656

Design and Monitoring Firm

Mulkey Engineers and Consultants 6750 Tryon Road Cary, North Carolina 27518 Phone: (919) 851-1912 Fax: (919) 851-1918

Project Manager: Wendee B. Smith Phone: (919) 858-1833

Project Engineer: Emmett Perdue, PE Phone: (919) 858-1874

Table of Contents

1.0	Executive Summary	1
2.0	Project Background	. 5
2.1	Project Location and Setting	5
2.2	Project Goals and Objectives	5
2.3	Project Restoration Approach and Mitigation Type	6
2.4	Project History	7
2.5	Project Monitoring Plan View	7
3.0	Project Condition and Monitoring Results	8
3.1	Project Vegetation Monitoring	8
3.1.1	Vegetation Monitoring Methodology	8
3.1.2	Vegetation Monitoring Success Criteria	9
3.1.3	Vegetation Monitoring Results for Year 1 of 5	10
3.1.4	Vegetation Monitoring Results for Year 2 of 5	10
3.1.5	Vegetation Monitoring Results for Year 3 of 5	11
3.2	Project Stream Monitoring	12
3.2.1	Stream Monitoring Methodology	12
3.2.2	Stream Monitoring Success Criteria	15
3.2.3	Stream Monitoring Results for Year 1 of 5	16
3.2.4	Stream Monitoring Results for Year 2 of 5	19
3.2.5	Stream Monitoring Results for Year 3 of 5	22
4.0	Project Monitoring Methodology	. 24
5.0	References	. 25

Figures

Figure 1. Location Map

Tables

Table I.	Project Restoration Approach and Mitigation Type
Table II.	Project Activity and Reporting History
Table III.	Project Contacts
Table IV.	Project Background
Table V.	Stem Counts Monitoring Year 3 for Each Species Arranged by Plot
Table VI.	Vegetative Problem Areas
Table VII.	Baseline Morphology and Hydraulic Summary
Table VIII.	Morphology and Hydraulic Monitoring Summary
Table IX.	BEHI and Sediment Transport Estimates
Table X.	Verification of Bankfull Events
Table XI.	Categorical Stream Feature Visual Stability Assessment
Table XII.	Stream Problem Areas

Appendices

Appendix A.	Monitoring Plan View
Appendix B.	Vegetation Plot Photos
Appendix C.	Reference Point Photos

Appendix D.Cross Section PhotosAppendix E.Raw DataAppendix F.Year 3 Areas of Concern Photos

1.0 Executive Summary

This annual monitoring report details the third year monitoring activities and their results for the Little White Oak Creek Stream Restoration Site (LWOC). All of the monitoring activities were conducted and the subsequent results are reported in accordance with the approved mitigation plan (Mulkey Engineers and Consultants, 2008) for LWOC. The content and format of this report were developed in accordance with the contract requirements for the Full Delivery RFP 16-D06027 (NCEEP, 2005). Accordingly, this report includes project background information, project monitoring results, and description of the project monitoring methodology.

Mulkey Engineers and Consultants (Mulkey) submitted LWOC for the Full Delivery RFP 16-D06027 to provide 18,200 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract and began work on the project on May 16, 2007 The primary goals of LWOC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat. These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for 18,290 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

LWOC is located in Polk County, North Carolina near the community of Mill Springs and is situated in the Broad River Basin. Past land use practices, including extensive cattle farming, stream channelization and dredging, and clearing of the riparian buffers resulted in substantial degradation of the stream systems at LWOC. LWOC is comprised of seven stream reaches totaling 18,290 feet of restored stream channel. All of the analyses, design, and restoration at LWOC were accomplished using natural stream channel design methods. In addition to stream channel restoration, the restored stream banks and the riparian and upland buffer areas along LWOC were also replanted with native species vegetation.

The survivability of the planted vegetation at LWOC was monitored at representative vegetation plots as well as project-wide. Stem counts, photo documentation and comparison, and visual assessment were utilized. Bare root stock were planted at a density of 680 stems per acre (8 foot by 8 foot spacing) and live stakes were planted on the stream banks at a density of 1,742 stems per acre (5 foot by 5 foot spacing). A total of 24 representative vegetation plots were installed at LWOC based on the recommendations set

Little White Oak Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

forth by EEP regarding the acreage contained in the conservation easement. The survivability of the planted woody vegetation at LWOC was monitored using annual stem counts at each of the plots. In addition to the stem counts, annual photos were taken at each of the plots and also from 14 other permanent photo reference points. The vegetation plot photos were used for photo documentation and comparison of the vegetation growth at each plot. The photo documentation at the reference points were employed to assist in a project-wide visual assessment of the vegetation at LWOC. Survivability will be based on achieving a minimum of 320 stems per acre after Year 3 and 260 stems per acre after Year 5, across the project site. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to insure survival throughout a complete growing season while still allowing for relative ease in identification.

In late August 2008, the vegetation monitoring for Monitoring Year 1 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 24 vegetation plots having a survivability of planted woody stems ranging from 438 to 1000 stems per acre, with an average survivability of 713 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC will meet the success criteria outlined above for Year 3 and Year 5. The comparisons of the baseline and Monitoring Year 1 photos at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points strongly complemented this suggestion, as no concerns, problems, or negative trends were documented. Similarly, the project-wide visual assessment provided further validation, as no vegetation problem areas were observed.

In mid-October 2009, the vegetation monitoring for Monitoring Year 2 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 24 vegetation plots having a survivability of planted woody stems ranging from 367 to 1000 stems per acre, with an average survivability of 670 stems per acre. As with the previous year, the results indicated the survivability of the planted woody vegetation at LWOC will meet the success criteria outlined above for Year 3 and Year 5. The comparisons of the baseline and Monitoring Year 2 photos at both the 24 vegetation plot photo reference points and the 14 permanent photo reference indicated the vegetation is moving in a positive direction. The project-wide visual assessment provided validated this positive trend, as no vegetation problem areas were observed.

In early November 2010, the vegetation monitoring for Monitoring Year 3 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 24 vegetation plots having a survivability of planted woody stems ranging from 327 to 917 stems per acre, with an average survivability of 557 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC met the success criteria outlined above for Year 3 and is on track to meet the criteria for Year 5. The comparison of the Monitoring Year 3 photos with all prior photos at both the 24 vegetation plots and the 14 permanent photo reference points indicated the vegetation is growing as expected. The vegetation is becoming well established and is steadily outcompeting many of the pioneer species such as grasses, briers,

and weeds. The project-wide visual assessment also validated this positive trend, as no vegetative problem areas were observed.

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored to evaluate the success of stream restoration at LWOC. The limits of the project stream reaches to be monitored at LWOC were determined using the sampling rates outlined by the USACE et al. (2003). The monitoring was conducted using annual field surveys, pebble counts, crest gage recordation, visual assessment and photo Baseline conditions for comparison of the stream parameters to be documentation. monitored were established from data gathered immediately after construction through the as-built survey process. Longitudinal profiles and Modified Wolman pebble counts were conducted for all reaches and a total of 13 permanent cross sections were surveyed and photo documented across LWOC. A total of eight crest gages across LWOC were installed for hydrologic monitoring to verify the occurrence of bankfull storm events. Annual photo documentation was used for stream monitoring to complement and validate the other stream monitoring practices from 14 permanent reference photo points. Annual project wide visual assessment was conducted using field observation and pedestrian surveys to identify any specific problem areas. Since it is only required during Monitoring Year 3 and Monitoring Year 5, the BEHI information was collected during this year. Stream restoration success at LWOC was evaluated by comparison of the annual monitoring results against those same parameters as predicted, specified, and required in the proposed design and as implemented during the construction process represented by the as-built or baseline conditions. Success was achieved when all such comparisons reveal positive trends toward overall stream stability.

In late August 2008, the stream monitoring for Monitoring Year 1 was conducted using the methodologies described above. The results of the stream dimension, pattern, and profile monitoring demonstrated that all of the reaches were experiencing the expected minor adjustments indicative of movement toward increased stream stability and were attributed to vegetation establishment and natural channel adjustments. Fluctuations in bed materials were expected to occur during the early years following construction. Fining of the bed materials was documented by the stream bed material monitoring. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. However, the monitoring results suggested on-site sediment supply from LWOC has been reduced as a result of the restoration. Fluctuations in bed materials are likely to continue and several years may be needed to observe a consistent bed material. Data collected at six of the eight on-site crest gauges provided evidence indicating a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 1. This documented the first of two required bankfull events over the five year monitoring period in order to achieve success with regards to hydrologic monitoring at LWOC. No stream problems were documented through the photo documentation comparison process. However, the project-wide visual assessment conducted along each of the project stream reaches revealed 12 specific stream problem areas which included in-stream structure failures and associated stream bank erosion, areas of floodplain and adjacent stream bank erosion, and an area of stream bank erosion. Mulkey elected to promptly address all of the observed stream problem areas and conducted construction repairs of each in October 2008.

All of the in-stream structures and the areas of floodplain and stream bank erosion were repaired. The repairs to the all of the areas of eroded stream banks included re-grading, reseeding with appropriate temporary and permanent seed, re-installing coir fiber matting, and re-planting with live stakes. Upon completion of the repair work, LWOC experienced no other stream problem areas and was deemed a success for Year 1 Monitoring.

In mid-October and early November 2009, the stream monitoring for Monitoring Year 2 was conducted using the methodologies described above. The results of the stream dimension, pattern, and profile monitoring demonstrated that all of the reaches were experiencing the expected minor adjustments indicative of movement toward increased stream stability and were attributed to vegetation establishment and natural channel adjustments. Fluctuations in bed materials were expected to occur during the early years following construction. Fining of the bed materials was documented by the stream bed material monitoring. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. However, the monitoring results suggested on-site sediment supply from LWOC has been reduced as a result of the restoration, particularly from increased native vegetation and soil stabilization. Fluctuations in bed materials are likely to continue and several years may be needed to observe a consistent bed material. Data collected at seven of the eight on-site crest gauges provided evidence indicating a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 2. This documented the second of two required bankfull events over the five year monitoring period in order to achieve success with regards to hydrologic monitoring at LWOC. No stream problems were documented through the photo documentation comparison process. However, the projectwide visual assessment conducted along each of the project stream reaches revealed 3 specific stream problem areas, all of which are associated with beaver dams constructed Mulkey is actively coordinating with the United States along reaches R1 and R2. Department of Agriculture (USDA) Wildlife Services under their Beaver Management Assistance Program (BMAP) to have the beavers and beaver dams removed, as well as to have site monitored for future beaver activity.

In early November 2010, the stream monitoring for Monitoring Year 3 was conducted using the methodologies described above. Despite the site suffering a flood event from the remnants of a tropical storm, the overall stability of the six stream reaches has improved. The stream dimension, pattern, and profile remained consistent with the previous years' data and continue to remain within the tolerances of the design parameters. The bed material in the larger streams is beginning to coarsen to the projected design values while the smaller streams remain finer than anticipated. It must be noted that along R1 the visual assessment indicated multiple areas of bank, bench, and terrace scour. The scour was confined to R1 as there was no presence of scour along the other five reaches though they experienced the same event as indicated by the absence of the crest gauge or direct measurement of the crest gauge on each respective reach and apparent deposition of sediment on the benches. Although mostly along the terrace, Mulkey intends to repair the scour areas in early 2011 to ensure an ample amount of time is available for the regrowth of vegetation in the areas where significant disturbance will occur. However, even with this disturbance along R1, the Bank Erosion Hazard Index (BEHI) and Near Bank Shear stress (NBS) evaluation of all reaches showed a significant reduction in sediment supply throughout the entire stream network.

As a note, Mulkey performed the required fence relocation to encompass a minimum 50 foot buffer as requested by NCEEP in late Spring of 2010. These changes are reflected on the plan sheets in Appendix A.

Therefore, it is the determination of Mulkey, the LWOC has proven to be an overall success in both vegetative and stream monitoring for Year 3 monitoring (2010). Both the vegetative and stream monitoring depict a stable stream system despite being impacted by flood flows. As mentioned, Mulkey intends to correct several areas of scour, however these areas are restricted to the floodplain benches and terraces which did not reflect negative trends under the monitoring guidance.

2.0 Project Background

2.1 **Project Location and Setting**

The Little White Oak Creek Stream Restoration Site is located in Polk County, North Carolina approximately 2.5 miles east/southeast from the community of Mill Springs along NC Highway 9 South, and approximately 0.5 mile northwest from the intersection of NC Highway 9 South and US Highway 74 (Figure 1). LWOC is situated in the Broad River Basin 8-digit cataloging unit of 03050105 and the 14-digit cataloging unit 03050105030010. Mulkey proposed to provide 18,200 Stream Mitigation Units (SMUs) with LWOC under the Full Delivery RFP 16-D06027 issued by the Ecosystem Enhancement Program Department of Environment and Natural Resources (NCEEP). Mulkey acquired and installed permanent fencing along an easement covering 55.3 acres, which encompasses the restored streams and associated buffers at LWOC.

2.2 **Project Goals and Objectives**

The primary goals of LWOC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat.

These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for 18,290 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands

- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

2.3 **Project Restoration Approach and Mitigation Type**

LWOC is comprised of three main reaches (R1, R2 Upper and R2 Lower) and four tributaries (R1A, R2A, R2B and R2D). Prior to construction, these seven reaches were identified and proposed for restoration due to their distinct stream characteristics and drainage areas. These seven existing reaches totaled approximately 15,487 linear feet. A total of 18,290 linear feet of stream channel was restored at LWOC within the 55.3 acre conservation easement.

Analyses, design, and restoration of the stream channels at LWOC was accomplished using Natural Stream Channel design methods developed by Rosgen (Rosgen, D. L., 1994, 1996, 1998). The proposed Rosgen channel type for two of the tributaries (R2A and R2B) was a C4 channel. The restoration of these tributaries was implemented using Priority Level I and II methodologies. The proposed stream classification for the majority of the reaches (R1, R1A, R2 Upper, and R2 Lower) was a C5 channel. A combination of Priority Level I and II methods were used to construct these reaches. The remaining reach (R2D) was proposed to be a C6 channel using the same methods previously mentioned.

The most significant stream restoration component at LWOC involved the reconstruction of each of the stream reaches such that stream flows greater than bankfull are allowed to access the restored stream's floodplain. Two different approaches were used to insure such floodplain access. The first approach involved relocating and raising the stream bed such that the historic floodplain is accessed by stream flows greater than bankfull (the sections of the project stream reaches that were restored using Priority Level I methodologies). A second approach was used where site constraints prevented such relocation and raising of the stream bed. Therefore the second approach involved building a floodplain at a level lower than the historic floodplain through the construction of bankfull benches (the sections of the project stream reaches that were restored using Priority Level II methodologies). Instream structures were installed along each of the stream reaches to provide grade control and stream bank protection, and to increase in-stream habitat diversity. The in-stream structures installed included rock cross vanes, j-hook rock vanes, rock vanes, constructed riffles, and root wads. Stream banks were further stabilized through the installation of coir fiber erosion control matting, temporary and permanent seeding, and the installation of native species vegetation in the form of transplants, live stakes, and bare root stock. All areas of the site that were disturbed during construction activities were stabilized using temporary and permanent seeding. The riparian and upland buffer communities along LWOC were also restored with native species vegetation using a target community which will emulate the Piedmont/Low Mountain Alluvial Forest described by Shafale and Weakley (1990). The conservation easement was fenced to permanently protect the restored stream and buffer areas. Information regarding the restoration approach and mitigation type for each of the seven project stream reaches is detailed in Table 1.

2.4 Project History

The existing conditions at LWOC prior to restoration were a result of cattle use for the past When Mulkey initially became involved with this project, there were 50 years. approximately 200 livestock (cattle and horses) utilizing the pastures. The livestock had never been fenced from any of the stream channels within LWOC. This continual livestock access to the streams resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and heavy siltation throughout LWOC, as well as reduced water quality due to large quantities of fecal matter into the stream system. Based on information gained from the property owner, it was determined that many of the streams at the LWOC, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. As a result of these land and water quality issues, Mulkey submitted LWOC for the Full Delivery RFP 16-D06027 to provide 18,200 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the NCEEP and began work on the project on May 16, 2007. The project activity and reporting history are detailed in Table II. Table III lists the contacts for the designer, contractor, relevant suppliers, and monitoring firm for LWOC. Table IV provides a complete listing of project background information.

2.5 **Project Monitoring Plan View**

Mulkey conducted monitoring baseline surveys along the entire length of each of the restored project stream reaches using total station survey equipment. These surveys were conducted to establish and document baseline conditions for the newly restored stream channels for future monitoring activities. As-built drawings were developed using the results of the monitoring baseline surveys. These drawing depicted the post construction condition of LWOC and are included in Appendix A. The as-built drawings consisted of plan sheets that include the following:

- Title sheet
- · Legend sheet
- As-built planimetric drawing developed from aerial photography of LWOC after the completion of construction
- · As-built planimetric drawings and profiles developed from the baseline monitoring field surveys

The as-built drawings illustrate the location of all major project elements, including, but not limited to the:

- Restored stream channel thalweg, normal edges of water, constructed bankfull channel limits, and the constructed cut slope limits
- · Conservation easement boundaries
- Permanent fencing limits
- Topography
- In-stream structures

- Photo points
- · Crest gages
- · Vegetation plots locations
- Permanent cross sections
- · Project survey control
- Monitoring profile survey limits
- Relevant structures and utilities

3.0 Project Condition and Monitoring Results

3.1 Project Vegetation Monitoring

3.1.1 Vegetation Monitoring Methodology

The survivability of the planted vegetation at LWOC, including both woody and herbaceous species, was monitored at representative vegetation plots as well as project-wide. Monitoring at representative vegetation plots focused primarily on planted woody vegetation and was conducted using stem counts and photo documentation. Project-wide monitoring of planted vegetation included both woody and herbaceous species and was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction was completed during the last week of November 2007. Throughout construction, appropriate temporary and permanent seeding was conducted to stabilize areas disturbed during construction. Appropriate existing native species vegetation was also salvaged, where feasible, in the form of transplants and live stakes, throughout the construction process. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of November and December 2007. These remaining plant materials consisted of native species bare root seedlings and live stakes and were installed, as appropriate, to restore the riparian and upland buffer communities along LWOC within the conservation easement area. A complete listing of the planting zones, their corresponding acreages, and the corresponding vegetation species was included in the approved mitigation report (Mulkey Engineers and Consultants, 2008). The bare root stock were planted at a density of 680 stems per acre (8 foot by 8 foot spacing) and the lives stakes were planted on the stream banks at a density of 1,742 stems per acre (5 foot by 5 foot spacing).

An As-Built Survey was initiated immediately following the installation of plant materials. In December 2007, during the as-built survey and after the completion of planting, a total of 24 representative vegetation plots (vegetation plots 1 through 24) were installed randomly across LWOC. An iron pipe was installed at each plot corner for monumentation and a polyvinyl chloride (PVC) pipe, along with a label specifying the plot number, was also installed at one of the corners of each plot. The plot corners were strategically located such that each plot has a total area of approximately 100 square meters. Between January and February 2008, after the establishment of the plots, all stems contained in the plots were identified and tallied by species and plot, then marked with loosely tied survey flagging (on lateral branches) to facilitate future identification. This data was recorded to provide the

baseline survivability. The survivability of the planted woody vegetation at LWOC for the various monitoring periods was then calculated using annual stem counts at each of the plots and compared to the baseline data. During each of the annual stem counts, the planted stems were re-flagged as required to ensure that all planted stems were accounted for and considered in the survivability calculations. In addition to the stem counts, photos were taken at each of the plots. Where necessary, the corner of each plot was remarked with PVC pipe and the plot number relabeled. This PVC plot corner was used as the reference point from which the annual vegetation plot photos were taken such that the photos at each plot will have the same orientation. The photos were compared to the photos from the previous years to validate and document vegetation success. In addition to the photo reference points established at each of the vegetation plots, a total of 11 additional permanent photo reference points were installed across LWOC. Subsequently, three additional permanent photo reference points (photo points 2.5Y1, 3.5Y1, and 8.5Y1) were added during the Year 1 monitoring period to ensure adequate photo documentation would be conducted within the monitoring limits of the project stream reaches. These additional permanent photo reference points were monumented using steel rebar and PVC pipe. Photos were taken from each of the 14 permanent photo reference points with the same orientation each applicable year and used for photo documentation and annual comparison of the vegetation growth across This exercise helped to further validate and document vegetation success at LWOC. Between January and February 2008, after installation of the described 11 LWOC. permanent photo reference points, photos were taken from each of the permanent photo reference points to document the baseline conditions at LWOC with regards to planted vegetation. Monitoring Year 1 and Monitoring Year 2 photos were taken from all 14 photo points during the visit in August 2008 and October 2009, respectively. Project-wide visual assessment was also used for vegetation monitoring at LWOC. A visual assessment was conducted using annual field observation and pedestrian surveys to identify any specific vegetation problem areas at LWOC during the monitoring period. Any problem areas where vegetation was lacking or exotic vegetation was present, was identified and categorized as bare bank, bare bench, bare floodplain, or invasive population. Such areas were documented using representative photos and their locations were identified on the Monitoring Plan View.

3.1.2 Vegetation Monitoring Success Criteria

Vegetation success at LWOC was determined by stem survivability. Successful survivability is dependent upon achieving at least 320 stems per acre after three years and 260 stems per acre after five years across the project site. Therefore, survivability rates exceeding these requirements in previous years were deemed successful. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification. As described above, photo documentation and visual assessment was used to complement the stem counts as part of the vegetation monitoring protocol at LWOC. If during any given year, the planted species survivability was not anticipated to meet the final criteria established for vegetation; supplemental plantings were considered. In the event this occurred, a remedial planting plan was developed to achieve the survivability goals established for Years 3 and 5.

3.1.3 Vegetation Monitoring Results for Year 1 of 5

In late August 2008, the vegetation monitoring for Monitoring Year 1 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at LWOC for Monitoring Year 1. Stem counts were conducted at each of the 24 vegetation plots and the results are summarized in Table V. Photos were taken from the photo reference points at each of the 24 vegetation plots. Appendix B compares these photos with the initial baseline photos taken from the photo reference points at each of the 24 vegetation plots. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points and provided the baseline photos for the 3 points installed during the Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment. The results of the Monitoring Year 1 stem counts showed that the 24 vegetation plots had successfully achieved the survivability of planted woody vegetation with stem counts ranging from 438 to 1000 stems per acre, with an average survivability of 713 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC should meet the success criteria defined in Section 3.1.2. During the stem counts, it was noted no significant volunteer woody species were observed at any of the 24 vegetation plots. The comparison of the baseline and Monitoring Year 1 photos at both the 24 vegetation plot photo reference points and the 11 permanent photo reference points strongly complemented this suggestion, as no concerns, problems, or negative trends were The project-wide visual assessment provided further validation, as no documented. vegetation problem areas were observed. Based on the results of the vegetation monitoring for Monitoring Year 1 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.4 Vegetation Monitoring Results for Year 2 of 5

In mid-October 2009, the vegetation monitoring for Monitoring Year 2 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 2. Stem counts were conducted at each of the 24 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes and compares the results of the initial stem counts from the original planting, the previous years, and Monitoring Year 2. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected photos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points from Year 0 and the photos from the 14 total permanent photo reference points in Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI. The results of the Monitoring Year 2 stem counts continued to display successful survivability in all 24 vegetation plots with the counts ranging from 367 to 1000 stems per acre and an average survivability of 670 stems per acre. Therefore survivability of the planted woody vegetation at LWOC should meet the success criteria Little White Oak Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

established in Section 3.1.2. Similar to Monitoring Year 1, no significant volunteer woody species were observed at any of the 24 vegetation plots. The comparison of the Monitoring Year 2 photos to those previously collected at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points suggested the vegetation was growing exceptionally well. Live stake vegetation has exceeded growth expectations and the bare root material is starting to overcome the weedy vegetation. A further review of the vegetation through the project-wide visual assessment validated this positive trend, as no concerns, problems, or negative trends were documented. Based on the results of the vegetation monitoring for Monitoring Year 2 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.5 Vegetation Monitoring Results for Year 3 of 5

In early November 2010, the vegetation monitoring for Monitoring Year 3 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 3. Stem counts were conducted at each of the 24 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes and compares the results of the initial stem counts from the original planting, the previous years, and Monitoring Year 3. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected Ophotos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points from Year 0 and the photos from the 14 total permanent photo reference points in Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI. The results of the Monitoring Year 3 stem counts continued to display successful survivability in all 24 vegetation plots with the counts ranging from 327 to 917 stems per acre and an average survivability of 557 stems per acre. Therefore survivability of the planted woody vegetation at LWOC meets the success criteria established in Section 3.1.2. for Year 3 and is on track for success in Year 5. Additional uncounted volunteer woody species were observed at all of the 24 vegetation plots. The comparison of the Monitoring Year 2 photos to those previously collected at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points suggested the vegetation was growing exceptionally well. Live stake vegetation has exceeded growth expectations and the bare root material is starting to overcome the weedy vegetation. A further review of the vegetation through the project-wide visual assessment validated this positive trend, as no concerns, problems, or negative trends were documented. Based on the results of the vegetation monitoring for Monitoring Year 3 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring. The only additional plantings that will be utilized are associated with the repair work discussed in Section 3.2.5.

3.2 **Project Stream Monitoring**

3.2.1 Stream Monitoring Methodology

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored to evaluate the success of the stream restoration activities at LWOC. The monitoring of stream dimension, pattern, and profile, or morphometric monitoring, along with the monitoring of stream bed material, were conducted using annual field surveys along with visual assessment. The morphometric, stream bed material, and stream bank stability monitoring were conducted along representative sections of the project stream reaches. Hydrologic monitoring consisted of field measurements of bankfull events using crest gages. Project-wide stream monitoring was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction were completed during the last week of November 2007. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of November and December 2007. The as-built survey of all of the stream reaches at LWOC were initiated immediately following the installation of plant materials and were conducted utilizing aerial photography and total station surveys while following the protocols set forth by the 2003 USACE Stream Mitigation guidelines (USACE et al., 2003). In addition to documenting the construction of LWOC for comparison to the proposed design, the results of the as-built survey were also used to establish baseline morphology for the proposed monitoring. This information is presented in Table VII. A summary of the restored stream channel lengths are outlined in Table I. A complete set of As-Built Drawings including a monitoring plan view and longitudinal profile for the as-built conditions of the restored channels can be found in Appendix A. After the completion of the as-built survey, the limits and corresponding lengths of the project stream reaches to be monitored at LWOC were determined using the sampling rates outlined by the USACE et al. (2003). A total of 5,893 linear feet (32%) of all restored stream channels will be surveyed annually during the monitoring period. Based on these the sampling rates, the limits of the project stream reaches to be surveyed annually for monitoring are as follows:

Reach R1 – 1,974 Linear Feet Total (Stations 14+00-R1- through 33+74-R1-) Reach R1A – 500 Linear Feet Total (Stations 0+00-R1A- through 5+00-R1A-) Reach R2 – 2,047 Linear Feet Total (Stations 25+13-R2- through 45+60-R2-) Reach R2A – 326 Linear Feet Total (Stations 0+00-R2A- through 3+26-R2A-) Reach R2B – 551 Linear Feet Total (Stations 9+35-R2B- through 14+86-R2B-) Reach R2D – 495 Linear Feet Total (Stations 2+84-R2D- through 7+79-R2D-)

The upstream and downstream limits of these reaches were monumented in the field using steel rebar/PVC pins. Each pin was also labeled with an aluminum tag identifying the respective reach and the correct descriptor ("begin" or "end").

A total of 13 permanent cross sections, consisting of both riffles and pools, were established across LWOC and surveyed during the as-built survey process. The number of cross

sections was determined using the sampling rates outlined by the USACE et al. (2003). The left and right ends of each cross section were monumented with a steel rebar pin and PVC pipe. An aluminum tag identifying the cross section number was also installed at the pin on the left side of the channel. In addition to the cross section surveys, photos were taken at each of the 13 cross sections, looking across the stream from left to right, to document the baseline conditions at each respective cross section. Specific stations along each permanent cross section were established during the as-built survey to promote replication and consistency during the subsequent annual cross section surveys. The stationing for each cross section was established to always begin on the left side of the channel, facing downstream, at the left rebar/PVC pin, and to continue across the stream channel to the rebar/PVC pin on the right side. The as-built survey of the 13 cross sections established the baseline conditions with regards to stream dimension. All of the 13 cross sections will be surveyed each year during the five-year monitoring period and the resulting parameters will be compared annually. The parameters to be monitored include bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. Annually, photos will be taken at each of the 13 cross sections looking across the stream from left to right and compared to the photos from the previous years to document stream conditions at each respective cross section.

The pattern for all of the stream reaches was surveyed and baseline conditions were established as part of the as-built survey. Monitoring surveys for stream pattern are limited to the project stream reaches specified above for annual monitoring surveys. The stream pattern parameters resulting from the annual monitoring surveys include sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. These parameters will be compared annually.

The as-built survey included a longitudinal profile survey along the entire length of all restored stream reaches. Longitudinal profiles were surveyed by identifying each stream feature (riffle, run, pool, or glide) and surveying specific points at each feature. These specific locations included top of bank, bankfull, water's edge or surface, and thalweg. The as-built survey were used to establish the baseline conditions with regards to monitoring the longitudinal profile within the project reaches described above. The longitudinal profiles surveys conducted each year are then limited to the project stream reaches specified above. The parameters resulting from these longitudinal profile surveys are compared on an annual basis to those of the baseline and previous years. The parameters to be monitored include bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing.

During the as-built survey, Modified Wolman pebble counts were conducted at each of the project stream reaches to classify the stream bed materials. The pebble counts for the larger project stream reaches (R1 and R2) were conducted at each of the permanent cross sections by performing an equal number of counts at each cross section and then combining the results into a reach-wide count. A minimum of 100 counts were made for each of these larger reaches. Reach-wide pebble counts were conducted along the smaller project stream reaches (R1A, R2A, R2B, and R2D). A minimum of 50 counts were made for each of these smaller reaches. The stream bed materials are monitored at LWOC by repeating the same

pebble count procedures on an annual basis. The results of the pebble counts for each specified project stream reach are compared on an annual basis.

BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information served as baseline data for stream bank stability at LWOC. Stream bank stability monitoring using these parameters is required in Monitoring Year 3 and 5. Data collected during these years will be compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both the stream bank erosion rates and sediment transport rates at LWOC are expected as a result of restoration and will be documented as described to demonstrate success.

A total of eight crest gages, one at each reach and one at the confluence of Reaches R1 and R2, were installed across LWOC during the as-built survey. At the base of each crest gage a permanent vertical datum was installed. The locations of each crest gage along with the elevation of the permanent vertical datum were surveyed during the as-built survey. The crest gages were used for the hydrologic monitoring at LWOC to verify the occurrence of bankfull storm events. Each crest gage was set during its initial installation and baseline photos were taken. The crest gages were checked annually and the flood stage(s) recorded by each gage and measured relative to the permanent vertical datum of the respective gage. The results of these measurements were used to document the occurrence of significant storm events, with the goal of specifically documenting the occurrence of bankfull and larger stream flow events.

Photo documentation and project-wide visual assessment was used for stream monitoring at LWOC to complement the other stream monitoring practices. A total of 14 permanent reference photo points were installed across LWOC (11 during the as-built survey and 3 during the Year 1 monitoring period as described above). These photo points were monumented using steel rebar/PVC pins. Photos were taken at that time to provide photo documentation of baseline stream conditions. Photos were taken from each of the 14 permanent photo reference points with the same orientation each year and were used for photo documentation and annual comparison of the stream conditions across LWOC. This exercise helped to further validate and document stream restoration success at LWOC. The visual assessment was conducted using annual field observations and pedestrian surveys to identify any specific problem areas along the streams at LWOC during the monitoring period. Any such problem areas were identified and organized under appropriate categories. Such areas were documented using representative photos, where applicable, and their locations were mapped on the Monitoring Plan View. The suspected cause and appropriate remedial action for each problem was determined. If during any given year, the streams were not anticipated to meet the final established monitoring criteria, corrective actions were considered. Such modifications were documented and discussed with EEP.

3.2.2 Stream Monitoring Success Criteria

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored annually for the project stream reaches as described in detail above. Stream restoration success at LWOC was evaluated by comparison of the annual results against the same parameters as predicted, specified, and required in the proposed design. Success was achieved when all such comparisons reveal positive trends toward overall stream stability. Expectation was the stream monitoring results should confirm the stream channels at LWOC are of the proposed stream channel type (Rosgen 1994).

Stream dimension parameters including bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius were measured and/or calculated for each of the permanent cross sections. The described dimension parameters were expected to remain consistent from year to year and should fall within the ranges established by the original proposed design parameters. It was expected and acceptable that minor adjustments in dimension will occur such as the development of point bars and the subsequent deepening of pools. As vegetation becomes established and the stream banks are stabilized, the anticipation was that the width depth ratios will decrease and the entrenchment ratios will increase slightly, both within the normal ranges for C and E stream channel types (Rosgen, 1994).

Stream pattern parameters including sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio were measured and/or calculated. Stream pattern measurements were expected to remain consistent from year to year and to fall within the originally proposed design parameters. As vegetation becomes established and the stream banks are stabilized, it was anticipated that the sinuosity of the streams will also adjust, likely becoming more sinuous with time.

Stream longitudinal profile parameters including bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing were measured. Longitudinal profiles parameters were expected to remain relatively consistent from year to year. The stream profiles should not show aggrading or degrading conditions during the five-year monitoring period, however, minor profile adjustments such as deepening of pools was expected.

Stream bed material was monitored using the described Modified Wolman pebble counts. The success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely occur during the early years following construction and several years may be needed to observe a consistent bed material. Bed materials should ultimately reflect the proposed design conditions for each reach at LWOC.

Stream bank stability will be monitored using BEHI and sediment transport estimates during Monitoring Years 3 and 5. Data collected during these years will be compared with preconstruction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both stream bank erosion rates and sediment transport rates at LWOC are expected as a result of restoration and will be documented as described to demonstrate success.

Hydrologic monitoring success was based on the ability to document the occurrence of bankfull storm events at LWOC. A minimum of two bankfull events, each occurring in two separate monitoring years, are required to be documented within the five-year monitoring period. The described crest gauges were used to determine and document the occurrence of these bankfull events.

As described above, photo documentation and visual assessment was used to complement the other stream monitoring practices as part of the stream monitoring protocol at LWOC. If during any given year, the streams were not anticipated to meet the final established monitoring criteria, corrective actions was considered. Such modifications were documented and discussed with EEP.

3.2.3 Stream Monitoring Results for Year 1 of 5

In late August 2008, the stream monitoring for Monitoring Year 1 was conducted. The methodologies described in the Section 3.2.1 were used for the stream monitoring at LWOC for Monitoring Year 1. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring. The results of these surveys were compared to the baseline data for the morphometric monitoring obtained during the as-built survey.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 1 with the initial baseline photos at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 1 and baseline conditions along with the raw data for each cross section. The comparison of the baseline and Monitoring Year 1 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments including decreasing width to depth ratios, increasing entrenchment ratios, and minor increases in depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the Year 1 Monitoring cross section photos to the as-built cross section photos strongly complemented these suggestions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally

proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included slightly increasing radii of curvature, indicative of movement toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included deepening of pools. The comparison of the baseline and Monitoring Year 1 longitudinal profiles did not show excessive aggrading or degrading. Overlays can be found in Appendix E along with the raw data from both the baseline and Monitoring Year 1 conditions.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials were expected to occur during the early years following construction. This expectation was observed in comparing the results of the baseline and Monitoring Year 1 pebble counts. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. This trend may be observed during the five-year monitoring period. At this time it is believed that the original assumption that the stream bed materials would coarsen after restoration may have been incorrect. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. The monitoring results do suggest, however that on-site sediment supply from LWOC has been reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at LWOC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the eight crest gages were checked during the Monitoring Year 1 surveys to monitor hydrology at LWOC. Six of the eight crest gages recorded flood stages in excess of the bankfull stage. The two crest gages that did not record flood stages in excess of the bankfull

Little White Oak Creek Stream Restoration Annual Monitoring Report (Year 3 of 5) December 2010

stage were the crest gages at Reaches R2A and R2D. The crest gage at Reach R2A apparently did not record any evidence of a flood stage event, possibly due to problems with the cork or the gage itself. The crest gage at Reach R2D recorded a flood stage that was 0.26 feet below the bankfull stage. Each of the crest gages was reset after checking stage measurements, in order to record future events. Table X lists the information related to the verification of bankfull events at LWOC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 1. This documentation of the first bankfull event at LWOC during the monitoring period suggests success with regards to hydrologic monitoring at LWOC.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 1 stream monitoring practices. Photos were taken from each of the original 11 permanent photo reference points. Three additional photo points (photo points 2.5Y1, 3.5Y1, and 8.5Y1) were also added to ensure that adequate photo documentation would be conducted within the monitoring limits of the project stream reaches. Photo point 2.5Y1 was added for Reach R2, photo point 3.5Y1 for Reach R2B, and photo point 8.5Y1 for Reach R1A. After installation, photos were taken at each of the three added photo points. Appendix C includes all of the described photos and provides comparison of the photos with the initial baseline photos taken from the 11 permanent photo reference points. The new photos taken at three additional photo points will serve as supplemental baseline condition photos and subsequent photos at these same locations will be compared in Monitoring Years 2 through 5. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. The project-wide visual assessment revealed 12 specific stream problem Each of these stream problem areas, including their description, location, and areas. suspected cause, are listed in Table XII. The stream problem areas included eight in-stream structure failures and associated stream bank erosion, three areas of floodplain and adjacent stream bank erosion, and one area of stream bank erosion. Mulkey elected to promptly address all of the stream problem areas and conducted construction repairs of each in October 2008. The eight stream problem areas categorized as failures of in-stream structures and were determined to be caused by incorrect construction of the given in-stream structure. The failed in-stream structures included j-hook rock vanes and rock cross vanes. All eight of the structures and the associated areas of stream bank erosion were repaired. Several of the j-hook rock vanes were converted to rock vanes during the repairs to prevent future point bar erosion. The three stream problem areas categorized as floodplain and adjacent stream bank erosion were determined to be attributed to the incorrect installation of floodplain interceptors. All three of the eroded areas were repaired and floodplain interceptors were installed using both rock and log materials. The remaining stream problem area categorized as stream bank erosion was determined to be caused by a minor field adjustment made to the stream alignment in order to save an existing mature tree at the request of the landowner. This area of stream bank erosion was also repaired. The repairs to the all of the areas of eroded stream banks included re-grading, re-seeding with appropriate temporary and permanent seed, and re-installing coir fiber matting. Black willow (Salix nigra) and/or silky dogwood (Cornus amomum) live stakes were harvested onLittle White Oak Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

site and were installed at the repaired stream banks. Please note that the results shown in Table XI were updated such that the repairs to the stream problem areas described above are included. Based on the results of the stream monitoring for Monitoring Year 1 at LWOC, as well as the subsequent corrective actions taken, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.4 Stream Monitoring Results for Year 2 of 5

In mid-October and the beginning of November 2009, the stream monitoring for Monitoring Year 2 was conducted. The methodologies described in the Section 3.2.1 were used for the stream monitoring at LWOC for Monitoring Year 2. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring. The results of these surveys were compared to the previous data collected during prior monitoring periods, baseline conditions established through the as-built survey, and to the proposed design parameters calculated prior to construction.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 2 with the initial baseline photos and the previous monitoring photos taken at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 2, the previous monitoring periods, and baseline conditions along with the raw data for each cross section. The comparison of Monitoring Year 2 to the previous surveys for stream dimension data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. Throughout all the cross sections, the bankfull cross sectional area and entrenchment ratios remained consistent indicating the channels were able to contain and convey all the flows experienced during Monitoring Year 2. However, the main channels R1 and R2 displayed typical signs of adjustment in their channel geometries. Both of these reaches have recently been impacted by beavers and some of these adjustments can be attributed to this recent development. In particular on R1, cross section 11 had a significant increase in the width to depth ratio due to the backwater of a downstream beaver dam causing the pool to experience siltation. On the other end, cross section 12 experienced the reverse because a beaver dam was located directly upstream and the cascading water created scour ultimately decreasing the width to depth ratio. Similarly, cross sections along R2 exhibited localized changes in channel geometries, some attributable to beaver activity and others to natural fluctuations, but all within the acceptable ranges of the design parameters. The one exception was cross section 1, with a width to depth ratio climbing up to 22 and the bankfull cross sectional area remaining consistent, a cursory analysis raised concern. However, the overlay of cross section 1 clearly demonstrated the channel developing opposing inner berms to better accommodate the low flow capacity. This effectively allowed the channel to deepen without creating a change in the cross sectional area causing the width to depth ratio to increase instead of decrease due to the derivation being based on the calculated value of mean depth. The results of the smaller tributaries R1A, R2A, R2B, and R2D consistently exhibited minor natural adjustments typical of stable C type streams. The comparisons of the Monitoring Year 2 overlays and

cross sectional photos to the previous year's strongly substantiated these findings, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the Year 2 monitoring data to previous years stream pattern data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches remained consistent to the design parameters with minor variations attributed to vegetation establishment, natural channel adjustments, and variance in measuring techniques. These minor variations can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. In comparing the data collected from Monitoring Year 2 to the previously collected data, the results followed the previous analysis. All reaches showed acceptable minor variations in all parameters monitored. These variations are within the design tolerances and are attributable to vegetation establishment, natural channel adjustments, and variance in measuring techniques. Overall, none of the longitudinal profiles can be found in Appendix E.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials and for comparison to the previous years' conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials were expected to occur during the early years following construction. Over time the expectation was for the stream to eventually coarsen, however, Monitoring Year 1 and Year 2 have shown the opposite to be true. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. Therefore it is believed that the original assumption that the stream bed materials would coarsen after restoration may have been incorrect. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. Nonetheless, the monitoring results do suggest on-site sediment supply from LWOC was reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as

baseline data for stream bank stability at LWOC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the eight crest gages were checked during the Monitoring Year 2 surveys to monitor hydrology at LWOC. Seven of the eight crest gages recorded flood stages in excess of the bankfull stage. The one crest gage that did not record a flood stage in excess of the bankfull stage was at Reach R2D. Although, the region has seen a significant drought, the site has received large quantities of rain this monitoring year. Additionally, the R2D reach has a constant flow of water throughout its course. The crest gage at Reach R2D recorded a flood stage that was 0.10 feet below the bankfull stage this monitoring year. This information coupled with the other seven gauges having recorded a bankfull event during this monitoring year suggested that Mulkey needs to recheck the R2D crest gage in 2010 for elevation discrepancies with regard to its zero elevation. All of the crest gages were reset after checking stage measurements, in order to record future events. Table X lists the information related to the verification of bankfull events at LWOC for Monitoring Year 2 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 2. This documented the second and final required bankfull event at LWOC and therefore demonstrated success with regards to hydrologic monitoring per Section 3.2.2.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 2 stream monitoring practices. Photos were taken from each of the 14 permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos between the baseline conditions, Monitoring Year 1 and Monitoring Year 2 photos taken from the 14 permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas (Table XI). During the project-wide visual assessment, along with the other Monitoring Year 2 field work activities, Mulkey noticed a significant increase in beaver activity at the site. Specifically, beaver dams have been constructed along Reaches R1, R2 Upper, and R2 Lower in several locations. Please note that Table XI and Table XII have been updated to reflect these observations. Mulkey is currently coordinating with the USDA Wildlife Services under BMAP to have the beavers and beaver dams removed, as well as to have the site monitored for future beaver activity. Mulkey has also observed cattle intrusion into the fenced buffers at LWOC. Mulkey is working with the landowner to prevent future cattle trespass from occurring. Other field observations made during the Monitoring Year 2 include the observation of the apparent restoration of wetland hydrology adjacent to Reach R1A. The restoration of Reach R1A appears to have reconnected the stream to its historic floodplain, as well as raise the groundwater table in the buffer areas adjacent to the reach. These observations are evidenced by the increase of wetland vegetation species and the saturation of the soils in the buffer areas adjacent to Reach R1A. The waste treatment outfall located on R1 reach and emanating from the nearby school appears to be functioning extremely well. Vegetation around the outfall is growing rapidly and helping to create a highly stable secondary treatment area.

Based on the results of the stream monitoring for Monitoring Year 2 at LWOC, as well as the subsequent corrective actions being taken, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

NCEEP expressed concerns regarding the fencing of the conservation easement at LWOC to Mulkey in a letter dated May 26, 2009. Mulkey responded to NCEEP in a June 1, 2009 letter, urging NCEEP to consider several key exceptions for this particular case. These exceptions are explained in the referenced June 1, 2009 letter. Mulkey awaits response from NCEEP regarding the July 2009 letter before further addressing the concerns raised by NCEEP.

3.2.5 Stream Monitoring Results for Year 3 of 5

In early November 2010, the stream monitoring for Monitoring Year 3 was conducted using the methodologies described above. Despite the site suffering a flood event from the remnants of a tropical storm, the overall stability of the six stream reaches has improved. The stream dimension, pattern, and profile remained consistent with the previous years' data and continue to remain within the tolerances of the design parameters which is explained in detail below. However the visual assessment did reveal areas of scour along the banks, benches, and terraces confined mostly to reach R1. Mulkey intends to repair these areas in early 2011 to ensure ample time for the project to recover. Nonetheless, per the monitoring guidance, the overall stability of LWOC is within acceptable tolerances.

LWOC experienced several storm events over the Year 3 monitoring period, the most extensive occurring from the remnants of a tropical storm occurring in late September of 2010. This event created storm flows well in excess of the bankfull stage evidenced by wrack lines along the terrace slopes. These lines were often above the measurable extent of the crest gages. In fact, the flows destroyed four of the eight crest gages across the site. The four destroyed crest gages existed on reaches which have achieved the two bankfull events in two separate years' hydrological monitoring success criteria. Overall, five of the six reaches on LWOC have achieved the hydrological success criteria for monitoring; therefore Mulkey intends to only continue monitoring R2D.

The visual assessment of LWOC supported the crest gage data with several areas of scour occurring along reach R1, vegetative matts being forced down, wrack lines along the terrace slopes, silt dispersed on the vegetation on the bench, deposition of sand/silt on the benches, and minor washing out of the fence. Most of this evidence can be viewed through the photo logs of the vegetation plots (Appendix B), photo points (Appendix C), and cross sections (Appendix D); however photos of the scour along R1 can be found in Appendix F as no existing photo points could capture the areas of concern. The scour occurred because back eddies were formed from the terrace slopes following the creek. In these areas the back eddies essentially drilled a hole in the bench and deposited the materials downstream. Areas of bank scour were located in the vicinity of these scour around the structure tie-ins with the bench where unforeseen eddies began to develop downstream of structure arms. Due to the location of this disturbance occurring up on the bench or terraces, the monitoring does not

reflect any instability from these areas of concern. Nonetheless, Mulkey perceived these areas of concern as detracting from the overall positive trends developing across LWOC and therefore intends to repair these areas in early 2011. The repairs will consist of a combination of grading and vegetative activities to minimize the effects of future excessive flows.

Contrary to the visual assessment, the comparison of the 13 cross sections to previous monitoring data indicated stability across the site (Appendix E). The cross sections along R2 (1-5) not only show signs of a stable channel, but they depict the expected tightening of the channel due to vegetation taking hold with aggradation along the banks occurring in all but 1 cross section. The cross section on R2A (6) also depicts this phenomenon while the cross sections for R1A (13), R2B (7) and R2D (8) show no significant change in shape or form. The cross sections along R1 (9-12) show slight variation in shape and form that is indicative of a recent excessive storm event. However, upon comparison of all cross sections with past monitoring data and design tolerances, every measured variable is either varying within the design tolerance or migrating back towards an acceptable value. Therefore in terms of channel dimension, LWOC has been determined to be stable and meeting all monitoring success criteria.

Similarly, the stream pattern for all reaches across LWOC portrayed a stable stream network. The meander length, belt width, and radius of curvature measurements for each reach remained within the design tolerances and showed no significant deviations from the previously collected monitoring data.

The longitudinal profiles, found in Appendix E, depicted slight variations in each stream reach. Reaches R1 and R2B were consistent with previously collected data while R2 and R2A displayed degradation and R1A and R2D aggradation. These differences can be attributed to the dynamic nature of the stream system coupled with the system experiencing an intense storm event. Typically, the bed materials would correlate and support stream bed fluctuation with aggrading streams displaying an influx of finer materials and vice versa for degrading streams. This correlation is displayed in R1A and R2D where the finer sediments upstream are being slowed by the vegetation and aggrading the channel. Similarly, R2 is displaying the correlation in reverse with the bed material coarsening while the bed degrades exposing the larger substrate materials. R1 has a consistent longitudinal profile and is beginning to coarsen indicating the reach still moving towards an equilibrium between stream power and sediment transport. R2A with degradation in the longitudinal profile and fining of the bed materials is still trying to accommodate the sediment supply exposed upstream during the construction process. R2B displayed consistent bed slope and bed form thus indicating a balance reached between stream power and sediment transport. Therefore all of the reaches except R2B are still showing the expected signs of stream fluctuation indicative of a system trying to establish equilibrium. None of the described trends are representative of trends toward instability, rather they depict the natural development of a young stream network striking a balance between stream power and sediment transport.

As detailed by the monitoring guidance, data was collected and analyzed for the Bank Erosion Hazard Index (BEHI) and Near Bank Shear Stress (NBS) in an effort to quantify the

Little White Oak Creek Stream Restoration Annual Monitoring Report (Year 3 of 5)

sediment transport rate in tons/year for each reach in LWOC (See Table IX). The results of this process indicated a significant decrease across LWOC. Pre-construction data determined the sediment transport rate to be 1853 tons/year. Data collected in Monitoring Year 3 revealed a sediment transport rate of 342 tons/year or an 82% reduction in sediment in the system. Reach R1, the reach most affected by the storm event, showed a reduction in sediment transport from 455 tons/year to 189 tons/year or a 58% reduction. These individual reach trends and cumulative system wide trends show extremely positive results and are indicative of stream stability across the entire stream network at LWOC.

In Spring of 2010, Mulkey relocated portions of the fence surrounding the easement around LWOC. This was performed at the request of NCEEP to ensure the entire easement was protected from cattle and to include the required 50 foot buffer established by the United States Army Corps of Engineers. The new fence locations have been incorporated and accurately depicted on the plan sheets found in Appendix B.

In conclusion, Mulkey has determined that all monitoring aspects have met the monitoring success criteria established for LWOC. Mulkey does intend to perform some minor corrections to LWOC in early 2011 so as not to detract from the overall success of the project. These corrections are minor in scope and do not affect the overall stability of LWOC. Given the overall success and the prior fence relocation, Mulkey does not recommend any action except to proceed with the annual stream monitoring.

4.0 **Project Monitoring Methodology**

Success criteria for stream mitigation sites are based on guidelines established by the USACE, US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and the NCDWQ (USACE et. al, 2003). These guidelines establish criteria for monitoring both hydrologic conditions and vegetation survival. These same guidelines were used to develop the monitoring methods, frequencies, and success criteria discussed herein for LWOC and further described in detail in the approved mitigation report (Mulkey Engineers and Consultants, 2008). LWOC site conditions will be monitored annually during the latter part of the growing season months (August, September, and October) over the five-year monitoring period. This monitoring period complies with the requirements set forth in the Full Delivery RFP 16-D06027. Monitoring results will be documented on an annual basis, with the associated reports submitted to the NCEEP as evidence that the established project goals and objectives are being achieved. The results of annual monitoring will be used to evaluate the degree of success LWOC has achieved in meeting the said goals and objectives. In the event that goals are not being met, Mulkey will coordinate with the NCEEP to develop a plan for ameliorating the areas of concern.

5.0 References

Mulkey Engineers and Consultants. 2008. Little White Oak Creek Stream Restoration Mitigation Report. August 2008.

NCEEP. 2005. Content, Format, and Data Requirements for EEP Monitoring Reports. Version 1.1, September 16, 2005. NCDENR, NCEEP. 17 pp.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena, 22:169-199.

Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. 1998. The Reference Reach – A Blueprint for Natural Channel Design. From Proceedings of the Wetlands and Restoration Conference, March 1998, Denver CO. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health and Natural Resources.

USACE, USEPA, NCWRC, and NCDWQ. 2003. Stream Mitigation Guidelines. April 2003.

		•		• •	nd Mitigation Type ation / D06027-B
Stream Reach ID	Restoration Approach	Mitigation Type	Linear Footage	Stationing	Comments
R1	P2	R	7,543	0+00 - 75+43	Channel relocation with floodplain excavation
R1A	P1/P2	R	1,040	0+00 - 10+40	Includes 850 feet of P1 and 190 feet of P2 channel relocation
R2 (Upper and Lower)	P2	R	7,107	0+00 - 71+07	Channel relocation with floodplain excavation
R2A	P2	R	336	0+00 - 3+36	Channel relocation with floodplain excavation
R2B	P1/P2	R	1,474	0+00 - 14+74	Includes 250 feet of P1 and 1224 feet of P2 channel relocation
R2D	P1/P2	R	790	0+00 - 7+90	Includes 100 feet of P1 and 690 feet of P2 channel relocation

R = Restoration

P1 = Priority I

EI = Enhancement I EII = Enhancement II

P3 = Priority III

S = Stabilization

SS = Stream Banks Stabilization

P2 = Priority II

Table II. Project Activity and	Reporting His	tory	
Little White Oak Creek Stream R	estoration / D0	6027-B	
Activity or Report	Scheduled Completion	Data Collection Completion	Actual Completion or Delivery
Restoration Plan Prepared	Oct-06	Aug-06	12-Feb-07
Restoration Plan Approved	Nov-06	N/A	30-Mar-07
Final Design - 90%	Dec-06	N/A	16-May-07
Construction	Jun-07	N/A	13-Nov-07
Temporary S&E mix applied to entire project area	Jun-07	N/A	13-Nov-07
Permanent seed mix applied to entire project area	Jun-07	N/A	13-Nov-07
Planting live stakes	Dec-07	N/A	11-Jan-08
Planting bare roots	Dec-07	N/A	11-Jan-08
End of Construction	Dec-07	N/A	11-Jan-08
Survey of As-built conditions (Year 0 Monitoring - Baseline)	Jan-08	Jan-08	9-Jan-08
Monitoring			
Year 1 - 2008	Dec-08	Sep-08	Dec-08
Year 2 - 2009	Dec-09	Oct-09	Dec-09
Year 3 - 2010	Dec-10	Nov-10	Dec-10
Year 4 - 2011	Dec-11	N/A	N/A
Year 5 - 2012	Dec-12	N/A	N/A

Bolded items represent those events or deliverables that are variable. Non-bolded items

represent events that are standard components over the course of a typical project.

		roject Contacts
	Little White Oak Creek St	ream Restoration / D06027-B
Designer		
		6750 Tryon Road
	Mulkey Engineers	Cary, NC 27518
	and Consultants	Contact:
~	~	Emmett Perdue, PE Tel. 919.858.1874
Constructio	on Contractor	
		P.O. Box 796
	Vaughan Contracting, LLC	Wadesboro, NC 28170
		Contact:
		Tommy Vaughan Tel. 704.694.6450
Planting Co	ordinator	
		150 Black Creek Road
	Bruton Nurseries and Landscapes	Fremont, NC 27830
		Contact:
~ ~ ~		Charles Bruton, Jr. Tel. 919.242.6555
Seeding Co	ntractor	
		P.O. Box 796
	Vaughan Contracting, LLC	Wadesboro, NC 28170
		Contact:
~		Tommy Vaughan Tel. 704.694.6450
Seed Mix S	ources	
		P.O. Box 669
	Evergreen Seed	Willow Spring, NC 27592
		Contact:
N		Wister Heald Tel. 919.567.1333
Nursery Sto	ock Suppliers	
		5594 Highway 38 South
	International Paper	Blenheim, SC 29516
	South Carolina SuperTree Nursery	Contact:
		Geoffrey Hill Tel. 803.528.3203
		762 Claridge Nursery Road
	North Carolina Forestry Service	Goldsboro, NC 27530
	Claridge Nursery	Contact: James West Tel. 010 731 7088
N	D. é	James West Tel. 919.731.7988
Monitoring	Performers	
		6750 Tryon Road
	Mulkey Engineers	Cary, NC 27518
	and Consultants	<u>Contact:</u>
		Emmett Perdue Tel. 919.858.1874

R1 R1 R1A R1A R2 R2A R2B R2D Drainage Impervious cover estimate (%) R1 R1A R2 R2D R1A R2B R2D Drainage Impervious cover estimate (%) R1 R1A R2 R2A R2 R2A R2 R2D R2 R2A R2 R2A R2 R2D R1A R2D R1 R1A R1 R2B R2 R1A R2 R1A R2 R2D R1 R1A R2 R1A R2 R2B R2 R2A R2 R2B R2 R2B R2 R2D R2 R2B R2 R2D R Physiographic Region R Corregion R Rosgen Classification (As-built) R	County, North Carolina 4.46 (2854) 0.11 (70) 10.85 (6944) 0.54 (355) 0.12 (77) 0.05 (32) 2 2 2 2 2 2 3 1
R1R1R1AR1AR2R2AR2BR2BR2DDrainage Impervious cover estimate (%)R1R1R1AR2R2AR2BR2DR2BR2DR2BR2DR1AR2BR2DR1AR2R2BR2DR1AR1AR2DR1AR1AR1AR2R2DR1AR2R2DR2AR2DR2AR2DR2AR2DR2AR2DR2BR2DR2BR2DR2BR2DR2BR2DR2DPhysiographic RegionR2BRosgen Classification (As-built)	0.11 (70) 10.85 (6944) 0.54 (355) 0.12 (77) 0.05 (32) 2 2 2 2 2 2 2 2 3
R1AR2R2AR2BR2BR2DDrainage Impervious cover estimate (%)R1R1AR2R2AR2BR2BR2DItream OrderR1AR1AR2R2BR2DItream OrderR1AR1AR2R1AR2R1AR2R2DCoregionRosgen Classification (As-built)	0.11 (70) 10.85 (6944) 0.54 (355) 0.12 (77) 0.05 (32) 2 2 2 2 2 2 2 2 3
R2R2AR2BR2DDrainage Impervious cover estimate (%)R1R1AR2R2AR2BR2DItream OrderR1R1AR2R2DR2BR2DItream OrderR1R1AR2R2DCoregionCoregionRosgen Classification (As-built)	10.85 (6944) 0.54 (355) 0.12 (77) 0.05 (32) 2 2 2 2 2 2 2 3
R2AR2BR2DDrainage Impervious cover estimate (%)R1R1AR2R2AR2BR2DCitream OrderR1R1AR2R2DCitream OrderR1AR1AR2R2DCitream OrderR1R1AR2R2DCitream OrderR1AR2R2AR2DR2AR2DCoregionCoregionCosgen Classification (As-built)	0.54 (355) 0.12 (77) 0.05 (32) 2 2 2 2 2 2 2 2 3
R2BR2DDrainage Impervious cover estimate (%)R1R1R1AR2R2AR2BR2DUtream OrderR1R1AR2R2AR1AR2R2AR1AR2R2AR2AR1AR2R2AR2AR2AR2AR2AR2AR2BR2DPhysiographic RegionCorregionCosgen Classification (As-built)	0.12 (77) 0.05 (32) 2 2 2 2 2 2 2 2 2 3
R2DDrainage Impervious cover estimate (%)R1R1AR2AR2AR2BR2Dtream OrderR1R1AR2R2AR2BCoregionRosgen Classification (As-built)	0.05 (32) 2 2 2 2 2 2 2 2 3
R1 R1 R1A R2 R2A R2B R2D R2D tream Order R1A R1A R2 R2D R1A K1 R2B R2D R1A R2D R1A R1A R1A R1A R1A R2 R1A R2A R2A R2D R1A R2D R2A R2D R2A R2D R2B R2D Physiographic Region Scoregion Rosgen Classification (As-built)	2 2 2 2 2 2 2 2 2 2 3
R1 R1 R1A R2 R2A R2B R2D R1 R1A R1 R1A R1 R1A R1 R1A R1 R1A R2 R2D R1 R1A R2 R2A R2 R2A R2 R2A R2 R2B R2D Physiographic Region Scoregion Rosgen Classification (As-built) Scoregion	2 2 2 2 2 2 2 3
R1AR2R2AR2BR2DStream OrderR1R1AR2R2AR2AR2BR2BR2DSogen Classification (As-built)	2 2 2 2 2 2 2 3
R2R2AR2BR2DBarbon OrderR1R1AR2R2AR2BR2DPhysiographic RegionCorregionRosgen Classification (As-built)	2 2 2 2 2 3
R2AR2BR2Dtream OrderR1R1AR2R2AR2BR2DPhysiographic Regionccoregioncsogen Classification (As-built)	2 2 2 3
R2BR2DAtream OrderR1R1AR2R2AR2BR2DPhysiographic RegionCorregionRosgen Classification (As-built)	2 2 3
R2D Itream Order R1 R1A R2 R2A R2B R2D Physiographic Region Scoregion Rosgen Classification (As-built)	3
Rteam Order R1 R1A R2 R2A R2B R2D Physiographic Region Scoregion Rosgen Classification (As-built)	3
R1 R1A R2 R2A R2B R2D Physiographic Region Corregion Rosgen Classification (As-built)	
R1A R2 R2A R2B R2D Physiographic Region Scoregion Rosgen Classification (As-built)	
R2 R2A R2B R2D Physiographic Region Scoregion Rosgen Classification (As-built)	1
R2A R2B R2D R2D Physiographic Region R00 Scoregion R00	
R2B R2D Physiographic Region Physiographic Region Becoregion Physiographic Region	3,4
R2D Physiographic Region Ecoregion Rosgen Classification (As-built)	2
Physiographic Region	1
Coregion Rosgen Classification (As-built)	1
Coregion Rosgen Classification (As-built)	Piedmont
Rosgen Classification (As-built)	Southern Inner Piedmont
R1, R1A, R2	C5
R2A, R2B	C4
R2D	C6
Cowardin Classification	R3UB2 [*]
	verview-Chewacla-Buncombe
Reference Site ID	UT to Ostin Creek
JSGS HUC for Project and Reference	
Project	03050105
Reference	03050105
ICDWQ Sub-basin for Project and Reference	
Project	03-08-02 (Broad)
Reference	03-08-03 (Borad)
ICDWQ Classification for Project and Reference	00 00 00 (Dorad)
Project	С
Reference	C,Tr
Any portion of any project segement 303d?	
Any portion of any project segement upstream of a 303d listed segment?	
Reasons for 303d listing or stressor	No
Percent of project easement fenced	

^{*}(R) Riverine (3) Upper Perennial (UB) Unconsolidated Bottom (2) Sand

								Ta	Table V. St	Stem	Coun	ts Mor	itorin	о Уеаг	3 for	tem Counts Monitoring Year 3 for Fach Snecies Arranged by Plot	necies	Arrar	noed hv	7 Plot									Γ
										Litt	le Whi	te Oal	k Cree	k Strea	ım Re	Little White Oak Creek Stream Restoration / D06027-B	n / D0	6027-1											
												Plots																	
Species	1	2	3	4	5	9	7	8	6	10	11 1	12 1	13 1/	14 15	5 16	5 17	18	19	20	21	22	23	Y 24 T	Year 0 Yea Totals (A	Year 0 Totals (Adjusted) ^A	Year 1 Totals	Year 2 7 Totals 7	Year 3 S Totals	Survival %
Shrubs																													
Cephalanthus occidentalis		F	F	╞	╞	⊢	╞	╞	╞	-	╞	╞	L		3	L	L	-				╞	-	6	6	8	7	4	44%
Cornus amomum		1					4	2		1		1	3	~										15	18	18	18	12	67%
Sambucus canadensis																								2	2	2	0	0	0%0
Trees																													
Betula nigra	1	8			⊢	2	5	5	\vdash	1		\vdash	2		\square		1		2			6		41	40	37	35	33	83%
Cornus florida														1						1				2	2	2	2	2	100%
Corylus americana																								17	5	4	3	1	20%
Diospyros virginiana											3	2				2							7	19	19	16	17	14	74%
Fraxinus pennsylvanica								2		2			7 1				4	2			5	1		37	35	35	31	24	9%69
Juglans nigra			2			\vdash					1									1			2	7	7	9	9	9	86%
Pinus echinata			2	1	1				1			1				2								28	26	15	11	8	31%
Pinus strobus						\vdash			2		1			4									1	20	21	18	11	8	38%
Pinus virginiana					3				2					2										12	13	6	8	7	54%
Prunus serotina			1		2						1	1		1						1				9	7	7	7	7	100%
Plantanus occidentalis						\vdash	2	2		5		7			4		2	5	16			1		45	45	45	45	44	98%
Quercus alba			5	7	3				3		1	1	1	1		7		1		1			7	35	43	39	41	38	88%
Quercus falcata									3	1	5			9		2				7				41	36	30	28	24	67%
Quercus michauxii	7	2								1		4	4 2	0	2		1		4		4	3		47	46	45	40	30	65%
Quercus nigra	8					6																		34	23	21	21	17	74%
Quercus phellos	2	2			2	4																		6	19	19	19	10	53%
Salix nigra						\vdash																		1	1	1	1	0	0%0
Ulmus americana								4		4			1		4		3	6			9	4		26	43	42	41	38	88%
Totals	18	13	10	8	11	15	11	15	11	15	12 1	13 1	1 1	1 15	5 13	3 13	11	18	22	11	18	15	17	453	460	419	392	327	71%
									St	Stems/Acre	re												F	Min	Ave	Max			
Year 0	966	823	735	653	741	950	748	763 6	683 6	694 6	-	705 79	795 615	15 850	0 868	8 757	518	854	1000	645	924	<i>776</i>	939	518	617	1000			
Year 1	966	823	571	571	576	826	. 602	763 5	562 6	694 6	615 58	581 79	795 615	15 729	9 826	6 598	438	813	1000	484	924	776	816	438	713	1000			
Year 2	966	_	490				_		_				711 615							444	843	776		367	668	1000			
Year 3	747	563	408	327	453	620	433 (602 4	442 6	612 4	492 5:	539 40	460 451	51 607	7 537	7 518	438	732	917	444	723	612	694	327	557	917			
Plot Acreage	0.024	0.023 0.025	0.025	0.025 (0.024 0	0.024 0	0.025 0.025	.025 0.	0.025 0.	0.025 0.	0.024 0.0	0.024 0.0	0.024 0.024	0.025 0.025	25 0.024	24 0.025	5 0.025	0.025	0.024	0.025	0.025	0.025 (0.025						
		1	ĺ		l	۱	l	l	l		н.												1						

Notes: ^A Year 0 Totals (Adjusted) represents the most accurate species occurrence, following corrections for misidentification and other issues during the initial counting process.
	Vegetative Problem Area ek Stream Restoration /		
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
No vegetative problem areas observed (Year 1, 2008)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 2, 2009)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 3, 2010)	All project reaches	N/A	N/A

PARAMETERS USGS Gage Data Dimension - Riffle Min Max Med BKF Width (ft) BKF Cross Sectional Area (sq. ft.) BKF Mean Depth (ft) BKF Mean Depth (ft) BKF Mean Depth (ft)		Regional Curve Interval	e Interval	al Pre-Frvicting Cor		ľ			ŀ			ŀ			
Min Max BKF Width (ft) odprone Width (ft) tional Area (sq. ft.) KF Mean Depth (ft) iKF Max Depth (ft)					Pre-Existing Condition		Project Reference Stream	sference S	tream	Γ	Design		A	As-built	
		UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
	15	43	25	16.6	20.3	18.4	16.0	20.6	18.5	1	1	25.7	22.9	24.1	23.5
· · · ·	-	1		69.6	118.6	94.1	67.2	72.8	67.2	90.8	113.6	98.4	73.5	79.5	76.5
	30	110	60	52.9	69.7	61.3	27.4	33.4	30.3	-	-	52.0	39.5	49.1	44.3
	1.5	3.8	2.5	3.20	3.43	3.32	1.57	1.72	1.64	-	1	2.02	1.6	2.1	1.89
	-	1	-	2.37	5.00	3.69	1.54	2.36	1.90	1.90	2.91	2.34	2.8	3.0	2.89
Width/Depth Ratio	-	:	-	5.2	5.9	5.6	9.3	12.7	11.3	-	1	12.7	10.7	14.7	12.7
Entrenchment Ratio	-	:	-	4.2	5.8	5.0	3.5	4.4	3.8	3.5	4.4	3.8	3.2	3.3	3.3
Wetted Perimeter (ft)		1				25.4	-	-	20.8	-	-	29.7	24.3	25.2	24.7
Hydraulic Radius (ft)	-	-	-			2.8	-	-	1.4	-	-	1.8	1.57	2.03	1.8
Pattern Min Max Med	I LL	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	1	ł	1	22.0	61.6	39.8	36.0	150.0	67.0	77.1	208.1	92.9	40.6	135.8	87.7
Radius of Curvature (ft)		1	-	23.4	63.8	37.7	19.0	115.0	49.0	38.5	159.5	68.0	35.5	108.4	58.1
Meander Wavelength (ft)		:	-	107.0	189.3	135.7	33.0	155.0	94.0	45.8	215.0 1	130.4	178.0	258.9	210.9
Meander Width Ratio	-	I	-	1.2	3.3	2.2	1.9	8.1	3.6	1.9	8.1	3.6	1.7	5.8	3.7
Profile Min Max Med	I LL	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)		:	-		-	-	-	-	:	-	-	:	14.3	43.1	27.5
Riffle Slope (ft/ft)	1	1	1	0.001	0.117	0.010	0.006	0.066 (0.028	0.002 (0.021 0	0.009	0.003	0.027	0.010
Pool Length (ft)	-	-	-	11.4	87.9	39.3	18.3	62.9	35.1	25.4	87.2	48.7	22.4	53.7	40.7
Pool Spacing (ft)	ł	I	-	50.6	402.6	140.9	50.3	105.8	78.9	69.8	146.8 1	109.4	113.3	323.8	193.5
Substrate															
d50 (mm)		:			8			3			8			0.5	
d84 (mm)		:			19			105			19			4.4	
Additional Reach Parameters									\square						
Bankfull Slope (ft/ft)		:			0.0028)	0.0090		C	0.0028		0	0.0025	
Channel Length(ft)		:			6530			590			7643			7543	
Valley Length (ft)		:			5717			404			5717			5717	
Sinuosity		ł			1.14			1.46			1.34			1.32	
Rosgen Classification		1		D	Degraded E5	5		C4/1			C5			C5	

			Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R1A (1040 ft)	vII. co ttle Wł	nite Oa	k Creel Reac	Little White Oak Creek Stream Restoration / D06027-B Reach R1A (1040 ft)	m Rest (1040 ft)	oration)	1 / D06)27-B	y II						
PARAMETERS	nsg	USGS Gage Data	Data	Regiona	Regional Curve Interval	nterval	Pre-Exi:	Pre-Existing Condition	Idition	Project F	Project Reference Stream	Stream		Design			As-built	
Dimension	Min	Мах	Med	Π	UL	Eq	Min	Max	Med	Min	Мах	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)	ł	1	:	9	21	12	4.5	10.9	7.7	16.0	20.6	18.5	1	1	8.0	-	1	7.8
Floodprone Width (ft)	ł		:				8.6	19.1	13.8	67.2	72.8	67.2	28.2	35.2	30.5			125.0
BKF Cross Sectional Area (sq. ft.)	ł	-	:	6	37	19	1.6	5.9	3.7	27.4	33.4	30.3		-	5.0		-	3.5
BKF Mean Depth (ft)	1	1	:	0.9	2.1	1.6	0.36	0.54	0.45	1.57	1.72	1.64	-	-	0.63		1	0.45
BKF Max Depth (ft)	-	1	:	-	-		0.54	1.18	0.86	1.54	2.36	1.90	0.59	06.0	0.73			0.79
Width/Depth Ratio	1	1	:	-	-		12.5	20.2	16.4	9.3	12.7	11.3	-	-	12.7		1	17.2
Entrenchment Ratio	1	1	:	-	-		1.7	1.9	1.8	3.5	4.4	3.8	3.5	4.4	3.8		1	16.1
Wetted Perimeter (ft)	-	-	:					-	4.7		1	20.8		-	9.3			8.1
Hydraulic Radius (ft)	1	-	-	-	-	-	-	-	0.3	1	-	1.4	-	-	0.5		:	0.4
Pattern	Min	Max	Med	TL	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	ł	ł	1	ł	1	1	1	ł	1	36.0	150.0	67.0	23.8	64.5	28.8	16.4	39.7	24.4
Radius of Curvature (ft)	!	-	:	-			-	1	-	19.0	115.0	49.0	12.0	49.5	21.1	10.0	21.0	14.7
Meander Wavelength (ft)	-	1	:	-			-	1	-	33.0	155.0	94.0	14.2	66.7	40.4	61.5	85.7	68.8
Meander Width Ratio	-	ł	;	1	-	-	1	1	1	1.9	8.1	3.6	1.9	8.1	3.6	2.1	5.1	3.1
Profile	Min	Max	Med	TL	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Мах	Med	Min	Max	Med
Riffle Length (ft)	1	-	:	-	-	-	-	-	-	1	-	-	-	-	1	8.0	26.0	14.5
Riffle Slope (ft/ft)	ł	ł	:	1	1	1	1	I	-	0.006	0.066	0.028	0.007	0.070	0.030	0.004	0.046	0.019
Pool Length (ft)	ł	1	:	-	-	-	-	1	-	18.3	62.9	35.1	7.9	27.1	15.1	7.5	30.7	18.5
Pool Spacing (ft)	ł	1	ł	ł	!	!	1	1	ł	50.3	105.8	78.9	21.6	45.5	33.9	15.0	52.3	32.0
Substrate																		
d50 (mm)		1						0			3			0			0.28	
d84 (mm)		ł			-			9			105			9			1	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)								0.0122			0.0090			0.0096			0.0115	
Channel Length(ft)					-			906			590			1225			1040	
Valley Length (ft)					-			854			404			854			854	
Sinuosity		-						1.06			1.46			1.43			1.22	
י. 5 פ								Dominadad D 60	50		1110			L C				

Image: Index and the functional protect functinal protect functional protect functional protect functio				Table	vII. co ittle W	ont. Ba hite Oa	seline I Ik Cree Rea	le VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2 (7107 ft)	logy ar m Rest 7107 ft)	nd Hyd oratior	raulic 1 / D06	Summe 027-B	ıry						
	PARAMETERS	SN	GS Gage]	Data	Region	al Curve	Interval	Pre-Exi	sting Con	Idition	Project F	leference	Stream		Design			As-built	
BKF width (t) ::::::::::::::::::::::::::::::::::::	Dimension	Min	Мах	Med	TL	UL	Eq	Min	Мах	Med	Min	Мах	Med	Min	Max	Med	Min	Max	Med
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	BKF Width (ft)	1	-		18	50	29	24.3	24.5	24.4	16.0	20.6	18.5	-	-	31.1	26.7	33.1	30.2
FCooks Sectional Area (sq. f) ::::::::::::::::::::::::::::::::::::	Floodprone Width (ft)	1	:		:	-	-	77.1	251.0	164.0	67.2	72.8	67.2	109.8	137.4	119.0	92.0	120.0	108.1
BKF Mean Depth (i) := := IS 1<	BKF Cross Sectional Area (sq. ft.)	:	1	-	40	150	85	76.1	76.7	76.4	27.4	33.4	30.3	1	1	76.0	61.9	73.5	66.0
	BKF Mean Depth (ft)	:	1	-	1.8	4	2.9	3.13	3.14	3.14	1.57	1.72	1.64	-	-	2.45	1.89	2.38	2.20
With/Depth Ratio	BKF Max Depth (ft)	1	1		-	-	-	3.61	4.94	4.10	1.54	2.36	1.90	2.30	3.52	2.83	2.95	4.40	3.68
	Width/Depth Ratio	1	1		-	-	-	7.7	7.8	7.8	9.3	12.7	11.3	-	-	12.7	11.5	17.5	14.0
Weted Perimeter (1)	Entrenchment Ratio	1	1		-	-	-	3.1	10.3	6.7	3.5	4.4	3.8	3.5	4.4	3.8	2.8	4.5	3.6
Hydraulic Radius (T)	Wetted Perimeter (ft)	1	1		-	-	-	-	-	28.0	-	-	20.8	-	-	35.9	28.0	34.0	31.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hydraulic Radius (ft)	:	1	:	1	1	1	1	1	2.7	1	1	1.4	1	1	2.1	1.8	2.3	2.1
	Pattern	Min	Max	Med	TT	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Radius of Curvature (t) <th>Channel Beltwidth (ft)</th> <th>:</th> <th>ł</th> <th>;</th> <th>1</th> <th>ł</th> <th>1</th> <th>15.2</th> <th>48.7</th> <th>32.8</th> <th>36.0</th> <th>150.0</th> <th>67.0</th> <th>60.4</th> <th>251.6</th> <th>112.4</th> <th>40.6</th> <th>169.2</th> <th>105.1</th>	Channel Beltwidth (ft)	:	ł	;	1	ł	1	15.2	48.7	32.8	36.0	150.0	67.0	60.4	251.6	112.4	40.6	169.2	105.1
	Radius of Curvature (ft)	ł	1	-	1	1	1	19.7	124.4	45.8	19.0	115.0	49.0	31.9	192.9	82.2	38.1	155.1	61.8
	Meander Wavelength (ft)	ł	1	-	1	-	1	85.8	165.1	118.2	33.0	155.0	94.0	55.4	260.0	157.7	179.3	296.1	248.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Meander Width Ratio	:	1	-	1	1	1	3.5	6.8	4.9	1.9	8.1	3.6	1.9	8.1	3.6	1.3	5.6	3.5
Riftle Length (ft) 2.3.6 Riftle Langth (ft) 0.001 0.008 0.006 0.001 0.014 0.006 0.001 Pool Length (ft) 8.5 137.1 42.0 18.3 0.01 0.014 0.006 0.001 Pool Length (ft) 38.7 442.4 205.7 50.3 105.8 78.9 18.9 18.9 Pool Length (ft) 38.7 442.4 205.7 50.3 105.8 78.9 18.9 18.9 18.9 Value Vertice (ft) 38.7 442.4 205.7 50.3 10.3 132.3 132.2 d50 (mm) 5.4 175.5 132.3 132.2 132.3 132.2 d50 (mm)	Profile	Min	Max	Med	TL	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Rifle Slope (ft/f) 0.001 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.014 0.006 0.001 0.001 0.014 0.005 0.001 0.001 0.014 0.005 0.001 0.014 0.005 0.001 0.014 0.005 0.001 0.014 0.005 0.001 0.001 0.001 0.001 0.005 0.001 0.005 0.005 0.001 0.005 0.001 0.001 0.005 0.001 0.0	Riffle Length (ft)	1	-		-	-	-	-	-	-	:	-	1	-	-	-	23.6	66.1	44.2
Pool Length (f) 8.5 137.1 42.0 18.3 62.9 35.1 30.8 105.5 58.9 18.9 Pool Spacing (f) 38.7 442.4 205.7 50.3 105.8 78.9 84.4 177.5 132.3 132.2 d50 (mu) 5.4 205.7 50.3 105.8 78.9 84.4 177.5 132.3 132.2 d50 (mu) 5.4 205.7 50.3 105.8 78.9 84.4 177.5 132.3 132.2 d84 (mu) - - 5.4 105 7.4 105 7.4 177.5 132.3 132.2 Barkfull Slope (fr/f) - - 5.4 105 5.4 17.5 132.3 132.2 Barkfull Slope (fr/f) - - 5.4	Riffle Slope (ft/ft)	:	1	:	-	1	1	0.001	0.008	0.003	0.006	0.066	0.028	0.001	0.014	0.006	0.001	0.002	0.001
Pool Spacing (ft) 38.7 442.4 205.7 50.3 105.8 78.9 84.4 177.5 132.3 132.2 d50 (mm) 0.8 3 105.8 78.9 84.4 177.5 132.3 132.2 d50 (mm) 5.4 105 5.4 105 5.4 17.5 132.3 132.2 d84 (mm) 5.4 105 5.4 105 5.4 17.5 132.3 132.2 d84 (mm) - - 5.4 105 5.4 105 5.4 17.5 132.4 127.5 132.2 Bankfull Slope (fvff) - - 5.4 105 5.4 105 5.4 17.5 132.2 17.5 132.2 Bankfull Slope (fvff) - - 5.4 105 5.4 105 5.4	Pool Length (ft)	:	1	:	-	1	1	8.5	137.1	42.0	18.3	62.9	35.1	30.8	105.5	58.9	18.9	84.9	52.3
d50 (mm) $ 0.8$ 3 0.8 0.90	Pool Spacing (ft)	ł	ł	!	1	1	1	38.7	442.4	205.7	50.3	105.8	78.9	84.4	177.5	132.3	132.2	264.4	183.0
	Substrate																		
(1 (mm)) $$ 5.4 105 5.4 $(7 (t))$ $$ $$ 0.0021 0.0090 0.0019 $gh(f)$ $$ $$ 0.0021 0.0090 0.0019 $gh(f)$ $$ $$ 5.78 5.90 7337 $gh(f)$ $$ $$ 5255 404 5255 $uosity$ $$ $$ $$ 1.14 1.40	d50 (mm)		1			1			0.8			3			0.8			0.6	
t(t) $$ 0.0021 0.0090 0.0019 $gth(t)$ $$ $$ 5978 590 7337 $gth(t)$ $$ $$ 5978 590 7337 $gth(t)$ $$ $$ 5978 590 7337 $gth(t)$ $$ $$ 5255 404 5255 1.40 $uosity$ $$ $$ 1.14 1.46 1.40 $C5$	d84 (mm)		1			1			5.4			105			5.4			4.7	
0.0021 0.0090 0.0019 5978 590 7337 5978 590 7337 5555 404 5255 1.14 1.46 1.40	Additional Reach Parameters																		
590 737 525 404 5255 1.14 1.46 1.40 1.14 1.46 1.40	Bankfull Slope (ft/ft)		1			1			0.0021			0600.0			0.0019			0.0017	
5255 404 5255 1.14 1.46 1.40 1.14 1.46 1.40	Channel Length(ft)		1			-			5978			590			7337			7107	
1.14 1.46 1.40 Darvedad ES C41 C5	Valley Length (ft)		1			-			5255			404			5255			5255	
Downoded ES CALL	Sinuosity		1			1			1.14			1.46			1.40			1.35	
Degraded E3 C4/1	Rosgen Classification		-			-		De	Degraded E5	5		C4/1			C5			C5	

				Table	. VII. c ittle W	ont. Ba hite Oa	seline l Ik Cree Rea	e VII. cont. Baseline Morphology and Hydraulic Summ Jittle White Oak Creek Stream Restoration / D06027-B Reach R2A (336 ft)	logy ar m Rest (336 ft)	nd Hyd oratio	lraulic 1 / D06	Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2A (336 ft)	ary						
Min Max Med L UL Eq Min Max Med Min	PARAMETERS	SU	3S Gage	Data	Region	al Curve	Interval	Pre-Exi	sting Cor	ndition	Project I	Reference	Stream		Design			As-built	
th (h) :: :	Dimension	Min	Мах	Med	LL	NL	Eq	Min	Мах	Med	Min	Max	Med	Min	Мах	Med	Min	Max	Med
th (h)	BKF Width (ft)	1	-		5.5	20	11	11.2	11.2	11.2	16.0	20.6	18.5	-	-	11.7			13.9
a, b, b, c,	Floodprone Width (ft)	ł	:					16.0	19.1	17.5	67.2	72.8	67.2	42.4	51.9	44.9			40.5
oh (h) 0.65 1.9 1.3 0.97 1.50 1.24 1.51 1.64 0.94 oh (h) 0.65 1.3 1.61 1.35 1.00 0.88 1.35 1.00 0.94 R (k) 1.4 1.5 3.5 1.24 3.35 1.00 0.94 R (k) 1.4 1.5 3.5 1.24 3.35 1.00 1.35 1.00 1.25	BKF Cross Sectional Area (sq. ft.)	:	1		6.5	28	16	10.8	16.8	13.8	27.4	33.4	30.3	-	-	11.0			15.8
mh (h)	BKF Mean Depth (ft)	:	1		0.65	1.9	1.3	0.97	1.50	1.24	1.57	1.72	1.64	-	-	0.94			1.14
R kilo ···· ··· ··· ··	BKF Max Depth (ft)	1	-					0.95	2.23	1.48	1.54	2.36	1.90	0.88	1.35	1.09			1.80
TRail <	Width/Depth Ratio	1	-					7.5	11.5	9.5	9.3	12.7	11.3	-	-	12.5			12.2
der (1) 1.3. 20.8 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.7 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6 1.3.6	Entrenchment Ratio		-		ł			1.4	1.7	1.6	3.5	4.4	3.8	3.5	4.4	3.7			2.9
ins (i) in <	Wetted Perimeter (ft)		-					-	-	13.2		1	20.8			13.6			14.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hydraulic Radius (ft)	-	-		:			-	-	1.3	-	-	1.4	-	-	0.8			1.1
Int (1) 202 202 702 700 17.0 72.8 95.0 42.4 32.2 Int (1) 8.8 31.4 21.1 19.0 115.0 49.0 72.8 93.1 73.2 Int (1) 76.7 76.7 76.7 76.7 33.0 155.0 94.0 72.8 31.0 17.6 Int (1) 18 18 18 19 81.1 36 92.9 93.1 17.6 Int (1) Max Med Int Max Med Min Max Med Min Max Med Min Max Med Min Min <th< th=""><th>Pattern</th><th>Min</th><th>Max</th><th>Med</th><th>TT</th><th>NL</th><th>Eq</th><th>Min</th><th>Max</th><th>Med</th><th>Min</th><th>Max</th><th>Med</th><th>Min</th><th>Max</th><th>Med</th><th>Min</th><th>Max</th><th>Med</th></th<>	Pattern	Min	Max	Med	TT	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
	Channel Beltwidth (ft)	ł	ł	1	:		-	20.2	20.2	20.2	36.0	150.0	67.0	22.8	95.0	42.4	32.2	49.3	40.0
ght (h) 76.7 76.7 76.7 33.0 155.0 94.0 50.3 99.3 50.4 50.4 50.4 50.5 99.4 50.5 50.5 50.5 50.5 <t< th=""><th>Radius of Curvature (ft)</th><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>8.8</td><td>31.4</td><td>21.1</td><td>19.0</td><td>115.0</td><td>49.0</td><td>12.0</td><td>72.8</td><td>31.0</td><td>17.6</td><td>27.2</td><td>22.9</td></t<>	Radius of Curvature (ft)	1	1	1				8.8	31.4	21.1	19.0	115.0	49.0	12.0	72.8	31.0	17.6	27.2	22.9
	Meander Wavelength (ft)	1	1	1				76.7	76.7	76.7	33.0	155.0	94.0	20.9	98.1	59.5	99.4	107.1	102.9
Min Max Med LL UL Eq Min Max Med Min	Meander Width Ratio	:	-		:			1.8	1.8	1.8	1.9	8.1	3.6	1.9	8.1	3.6	2.3	3.6	2.9
gth (f)	Profile	Min	Max	Med	TT	NL	Eq	Min	Max	Med	Min	Max	Med	Min	Мах	Med	Min	Max	Med
c(t)(t) $$	Riffle Length (ft)	1	1		1	1	1		-	ł		1		1	1	ł	5.8	46.8	23.1
ght (t) 17.2 65.4 31.8 62.9 35.1 11.6 39.8 22.2 16.6 ing (t) 83.1 165.7 113.2 50.3 105.8 78.9 31.8 67.0 49.9 61.7 ing (t) 83.1 165.7 113.2 50.3 105.8 78.9 31.8 67.0 49.9 61.7 (1000) 20 20.3 105.8 78.9 31.8 61.7 61.7 (1000) 50 20 20 20 20.5 16.6 31.7 (1001) 50 20 20.3 20.5 20 20.5 20 20.5 20 (1011) - 50 - 20	Riffle Slope (ft/ft)		-					0.004	0.024	0.011	0.006	0.066	0.028	0.006	0.066	0.029	0.011	0.131	0.046
ing (ft) 83.1 165.7 113.2 50.3 105.8 78.9 61.0 49.9 61.7 (num) 20 31.8 67.0 49.9 61.7 (num) 50 31.8 67.0 49.9 61.7 (th) 50 31.6 50 31.8 67.0 49.9 61.7 (th) 50 31.6 500 37.9 50 50 (th) 11.8 11.46 15.4 50 50 50 50 (th) 11.8 1.404 2.46 1.54	Pool Length (ft)	-	:		ł			17.2	65.4	31.8	18.3	62.9	35.1	11.6	39.8	22.2	16.6	42.1	29.5
	Pool Spacing (ft)	1	1		1	1	:	83.1	165.7	113.2	50.3	105.8	78.9	31.8	67.0	49.9	61.7	72.9	65.7
	Substrate																		
(1 (mm)) $ 50$ 105 50 50 $c(t/t)$ $ 0.0107$ 0.090 0.0091 $ gth(t)$ $ 0.0107$ 0.0090 0.0091 $ gth(t)$ $ 377$ 590 379 $ gth(t)$ $ 319$ 404 246 $ uosity$ $ -$	d50 (mm)		ł			ł			20			3			20			0.5	
t(t/t) 0.0107 0.090 0.0091 $gth(t)$ $ 377$ 590 379 $gth(t)$ $ 319$ 404 246 $uosity$ $ 1.18$ 1.46 1.54	d84 (mm)		-			1			50			105			50			27.5	
0.0107 0.0090 0.0091 377 590 379 319 404 246 1.18 1.46 1.54 1.18 1.46 1.54	Additional Reach Parameters																		
377 590 379 319 404 246 1.18 1.46 1.54 1.18 1.46 1.54	Bankfull Slope (ft/ft)		ł			ł			0.0107			0.0090			0.0091			0.0150	
	Channel Length(ft)		ł			ł			377			590			379			336	
1.18 1.46 1.54 Daverdad E4 C41 C4	Valley Length (ft)		ł			1			319			404			246			246	
Darwedad Ed CAU CA	Sinuosity		1			1			1.18			1.46			1.54			1.36	
Degraded E4 C4/1 C4	Rosgen Classification		1			ł		D	Degraded E4	34		C4/1			C4			C5	

PARAMETERSUSGS Gage DataRegional Curve IntervalPDimensionMinMaxMedLLULEqABKF Width (f) \cdots \cdots \cdots 3 11162Floodprone Width (f) \cdots \cdots \cdots 3 11164.55BKF Mean Depth (f) \cdots \cdots \cdots 2 9 4.5 6 1 Width/Depth Ratio \cdots \cdots \cdots 2 2 9 4.5 1 Width/Depth Ratio \cdots \cdots \cdots 2 2 9 4.5 1 Width/Depth Ratio \cdots \cdots \cdots 2 2 2 1 1 6 2 Width/Depth Ratio \cdots \cdots \cdots 2 2 2 2 2 3 1 6 2 PatternWetted Perimeter (f) \cdots \cdots \cdots 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 6 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 2 3 3 2 3 <th>┠──╉╉┼┼┼┼┼┼┼╉╉┼┼┼</th> <th>Max Max Max 6.4 195.3 8.7 1.35 1.36 4.8 30.3 Max</th> <th></th> <th></th> <th>e Stream Med 18.5 67.2</th> <th></th> <th>Design Max</th> <th>Med</th> <th>As. As. As. As.</th> <th>Ae built</th>	┠──╉╉┼┼┼┼┼┼┼╉╉┼┼┼	Max Max Max 6.4 195.3 8.7 1.35 1.36 4.8 30.3 Max			e Stream Med 18.5 67.2		Design Max	Med	As. As. As. As.	Ae built
Min Max Med LL UL Eq I BKF Width (ft) 3 11 6 12 12 14 15 Floodprone Width (ft) 3 11 6 12 12 0 12	Eq 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Max 6.4 195.3 8.7 8.7 1.35 1.80 1.80 4.8 30.3 30.3 	┝╋┽┽┽┽┽┽┽┽╋╋	┠╉┼┼┼┼┼┼┼╂	Med 18.5 67.2					1TINO.
BKF Width (t) 3 11 6 F Cross Sectional Area (sq. ft.) BKF Mean Depth (ft) 0.45 1.2 0.8 BKF Max Depth (ft) 0.45 1.2 0.8 BKF Max Depth (ft) 0.45 1.2 0.8 BKF Max Depth (ft) 0.45 1.2 0.8 Width/Depth Ratio Width/Depth Ratio Width/Depth Ratio <th>6 4.5</th> <th>6.4 195.3 8.7 8.7 1.35 1.35 4.8 30.3 30.3 Max</th> <th>┝┽┽┽┽┽┽╉╋</th> <th>┝┼┼┼┼┼┼╂</th> <th>18.5 67.2</th> <th>Min</th> <th>_</th> <th></th> <th>-</th> <th>Max Med</th>	6 4.5	6.4 195.3 8.7 8.7 1.35 1.35 4.8 30.3 30.3 Max	┝┽┽┽┽┽┽╉╋	┝┼┼┼┼┼┼╂	18.5 67.2	Min	_		-	Max Med
Floodprone Width (ft) F Cross Sectional Area (sq. ft.) 2 9 4.5 1 BKF Mean Depth (ft) 2 9 4.5 1 BKF Mean Depth (ft) 0.45 1.2 0.8 3 Width/Depth Ratio Width/Depth Ratio -		195.3 8.7 1.35 1.35 1.80 4.8 30.3 30.3 Max	─┤ ┤ ┤ ┤ ┤ ┥ ┩ ┩		67.2	-	-	8.0		8.9 8.8
F Cross Sectional Area (sq. ft.) 2 9 4.5 BKF Mean Depth (ft) 0.45 1.2 0.8 7 BKF Max Depth (ft) 0.45 1.2 0.8 7 BKF Max Depth (ft) 0.45 1.2 0.8 7 BKF Max Depth Ratio Width/Depth Ratio <	4.5 0.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	8.7 1.35 1.35 4.8 4.8 30.3 Max	┝┽┽┽┽╉╋			28.2	35.2	30.5	26.0 7	75.0 49.1
BKF Mean Depth (ft) 0.45 1.2 0.8 BKF Max Depth (ft) Width/Depth Ratio Width/Depth Ratio Width/Depth Ratio Wetted Perimeter (ft)		1.35 1.80 4.8 30.3 30.3 Max	┝┽┽┽┽╉╋		30.3	1	1	5.0	4.9	8.7 6.3
BKF Max Depth (t) <th></th> <th>1.80 4.8 30.3 Max</th> <th>┽┽┽╉╉</th> <th></th> <th>1.64</th> <th>-</th> <th>-</th> <th>0.63 (</th> <th>0.56 0</th> <th>0.98 0.72</th>		1.80 4.8 30.3 Max	┽┽┽╉╉		1.64	-	-	0.63 (0.56 0	0.98 0.72
Width/Depth Ratio $Fantrenchment RatioWetted Perimeter (f)Wetted Perimeter (f)Wetted Perimeter (f)Hydraulic Radius (f)Mine Beltwidth (f)Meander Wavelength (f)<$	Eq. 1	4.8 30.3 Max	┝┽┽┽╉╉		1.90	0.59	0.90	0.73 0	0.93 1	.48 1.13
Entrenchment Ratio Wetted Perimetr (f) Hydraulic Radius (f) Min Max Med LL UL Eq Manuel Beltwidth (f)	Edda : :	30.3 Max			11.3	-	-	12.7	9.0 1	15.7 13.0
Wetted Perimeter (ft) Hydraulic Radius (ft) Min Max Med LL UL Eq Min Max Med LL UL Eq Radius of Curvature (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Wavelength (ft)	Edd : :	 Max			3.8	3.5	4.4	3.8	3.0	8.5 5.6
Hydraulic Radius (ft)MinMaxMedLLULEq2Channel Beltwidth (ft)22Channel Beltwidth (ft)22Radius of Curvature (ft)222Meander Wavelength (ft)222Meander Wavelength (ft)222Meander Wavelength (ft)222Meander Wavelength (ft)222Meander Width Ratio222Meander Width Ratio222Meander Width Ratio222Meander Width Ratio222Miffle Length (ft)222Pool Length (ft)2222Pool Spacing (ft)222Pool Spacing (ft)222Pool Spacing (ft)222Pool Spacing (ft)222Po		 Max 			20.8			9.3	9.1	9.7 9.3
	Eq.	Max 			1.4	-	-	0.5	0.5 0.	0.0 0.7
		:	360	1 IMIAX	Med	Min	Max	[] Med	Min N	Max Med
Radius of Curvature (ft) <th< th=""><th>-</th><th></th><th></th><th>0 150.0</th><th>67.0</th><th>15.5</th><th>64.5</th><th>28.8</th><th>8.0 3</th><th>37.1 22.6</th></th<>	-			0 150.0	67.0	15.5	64.5	28.8	8.0 3	37.1 22.6
Meander Wavelength (ft)	1		19.0	0 115.0	49.0	8.2	49.5	21.1	7.9 3	31.0 15.3
Meander Width Ratio <td></td> <td></td> <td> 33.0</td> <td>0 155.0</td> <td>94.0</td> <td>14.2</td> <td>66.7</td> <td>40.4</td> <td>56.1 7</td> <td>70.8 63.6</td>			33.0	0 155.0	94.0	14.2	66.7	40.4	56.1 7	70.8 63.6
Min Max Med LL UL Eq Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)		-	1.9	8.1	3.6	1.9	8.1	3.6	, 0.0	4.2 2.6
Image: line line line line line line line line	_	Max	Med Min	n Max	Med	Min	Max	[] Med	Min N	Max Med
				1	:	-	-	-	5.7 1	17.0 10.1
		-	0.006	0.066	0.028	0.008	0.083 (0.036	-	-
		-	18.3	3 62.9	35.1	7.9	27.1	15.1	10.5 3	31.5 16.6
	-	i 	50.3	3 105.8	78.9	21.6	45.5	33.9	15.5 10	105.3 35.6
Substrate										
d50 (mm)		4.9		3			4.9		•	0.1
d84 (mm)		28		105			28		•	6.2
Additional Reach Parameters										
Bankfull Slope (ft/ft)		0.0145		0.0090)	0.0113		0.0	0.0139
Channel Length(ft)		1385		590			1654		1	1474
Valley Length (ft)		1264		404			1091		1	1091
Sinuosity		1.10		1.46			1.52		1	1.35
Rosgen Classification		G5c		C4/1			C4		-	C5

			Table Li	VII. co lttle WI	ont. Bas nite Oa	seline A k Creel Rea	e VII. cont. Baseline Morphology and Hydraulic Summ Little White Oak Creek Stream Restoration / D06027-B Reach R2D (790 ft)	logy an m Rest (790 ft)	ld Hyd oration	raulic 1 / D060	Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2D (790 ft)	ıry						
PARAMETERS	nsc	USGS Gage Data	Data	Regiona	Regional Curve Interval	nterval	Pre-Exi	Pre-Existing Condition	dition	Project F	Project Reference Stream	Stream		Design			As-built	
Dimension - Riffle	Min	Max	Med	TL	UL	Eq	Min	Max	Med	Min	Мах	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)	1	1	:		1	3.3	3.8	7.2	5.5	16.0	20.6	18.5	-	1	8.0	1	1	8.8
Floodprone Width (ft)	1	1	1		1	1	8.4	12.6	10.5	67.2	72.8	67.2	28.2	35.2	30.5			70.0
BKF Cross Sectional Area (sq. ft.)	1	-			1	2.7	2.7	5.8	4.3	27.4	33.4	30.3			5.0		-	6.0
BKF Mean Depth (ft)	1	1		-	-	0.6	0.70	0.80	0.75	1.57	1.72	1.64	-	-	0.63		1	0.68
BKF Max Depth (ft)	1	-	:		1	1	1.12	1.65	1.40	1.54	2.36	1.90	0.59	06.0	0.73			1.02
Width/Depth Ratio	1	-			1	1	5.3	8.8	7.1	9.3	12.7	11.3	-	-	12.7		-	13.0
Entrenchment Ratio	1	1	:		1	-	1.8	2.2	2.0	3.5	4.4	3.8	3.5	4.4	3.8	-	-	7.9
Wetted Perimeter (ft)	:		-	-	-	-	-	-	-	-	-	20.8	-	-	9.3			9.3
Hydraulic Radius (ft)	:	:	-	-	-	-	-	-	-	1	-	1.4	-	-	0.5		:	0.7
Pattern	Min	Max	Med	TT	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	1	1			1	-	-	-	1	36.0	150.0	67.0	15.5	64.5	28.8	8.6	42.0	24.8
Radius of Curvature (ft)	1	1			1	-	-	-	1	19.0	115.0	49.0	8.2	49.5	21.1	8.2	20.1	13.3
Meander Wavelength (ft)	ł	-	:		-	-	-	-	1	33.0	155.0	94.0	14.2	66.7	40.4	47.7	68.6	61.8
Meander Width Ratio	:	:	:	-	:	1	1	:	:	1.9	8.1	3.6	1.9	8.1	3.6	1.0	4.8	2.8
Profile	Min	Мах	Med	TT	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	:	:	:	-	:	-	-	:	:	1	-	1	-	-	1	6.2	26.4	13.4
Riffle Slope (ft/ft)	:	:	-	-	-	-	-	-	-	0.006	0.066	0.028	0.008	0.083	0.036	0.008	0.062	0.028
Pool Length (ft)	1		:	-	-	:	-	-	:	18.3	62.9	35.1	7.9	27.1	15.1	10.1	23.3	15.9
Pool Spacing (ft)	ł	ł	ł	1	ł	ł	ł	1	ł	50.3	105.8	78.9	21.6	45.5	33.9	31.8	90.7	51.9
Substrate																		
d50 (mm)		ł			ł			0.06			3			0.06			0.32	
d84 (mm)		:			-			0.21			105			0.21			0.5	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		-			-			0.0111			0.0090			0.0079			0.0105	
Channel Length(ft)		1			-			549			590			860			790	
Valley Length (ft)		1			-			486			404			571			571	
Sinuosity		-			-			1.13			1.46			1.51			1.38	
					:		Ъ	Degraded E6	9		C4/1			C6			30	

							,	7.1.1.1				- TT TT E	11 - L		0												
								Littly	e Whit	orpno e Oak	ogy an Creek : Reach	ogy and rrydraunc Creek Stream Resto Reach R1 (7543 ft)	Latter VIII. Morphology and riveraute monitoring summary Little White Oak Creek Stream Restoration / D06027-B Reach R1 (7543 ft)	ation /]	ng sur D0602.	-B											
PARAMETERS		Cross :	Cross Section 9 Pool	6			Cross St Po	Cross Section 10 Pool			Cros	Cross Section 11 Pool	11		Ĭ	Cross Section 12 Riffle	ion 12	Γ					┝				
Dimension	MY1	MY2 M	-	MY4 M	MY5 M	MY1 M	MY2 M	MY3 MY4	4 MY5	MY1	MY2		MY4 M	MY5 MY1	YI MY2	-	MY4	MY5	MY1	MY2 1	MY3 N	MY4 N	MY5 M	MY1 M	MY2 MY3	3 MY4	4 MY5
BKF Width (ft)		-	_			_		-		-	20.5	-	_		+	-	_		-	-		-		+	_	_	-
Floodprone Width (ft)	80.3		77.3	╞	10.	1		109.1		129.3	83.3	87.7		74	74.9 96.5	-			F		╞			$\left \right $	$\left \right $		
BKF Cross Sectional Area (sq. ft.)	45.9	45.1 3.	35.4		46	40.7 42	42.6 34	34.7		61.1	44.4	60.5		48	48.9 59.2	2 44.0						-	-				
BKF Mean Depth (ft)	1.99	1.91 1	1.82		2	2.15 1.0	1.64 2.0	2.08		2.88	2.16	2.27		2	2.16 2.50	0 1.91											
BKF Max Depth (ft)	3.95	4.38 3	3.69		3	3.70 3.4	3.48 3.9	3.94		6.32	3.59	4.02		3.1	3.22 5.01	1 4.04											
Width/Depth Ratio	11.6	12.4 1	10.7		8.	8.8 15	15.9 8.	8.0		7.4	9.5	11.7		10	10.5 9.5	5 12.1											
Entrenchment Ratio	3.47	3.59 3	3.97		5	5.55 4.0	1.06 6. <u>5</u>	6.53		6.10	4.06	3.29		3.2	3.31 4.08	8 3.48											
Wetted Perimeter (ft)	25.1	26.2 2	22.0		22	22.5 27	27.9 20	20.5		25.7	23.6	29.5		25	25.0 27.2	25.4			-								
Hydraulic Radius (ft)	1.83	1.72 1	1.61		1.	1.81 1.	.53 1.0	1.69		2.37	1.88	2.05		1.5	1.95 2.18	8 1.73											
			l			ł													1	1							
PARAMETERS	L	Μ	MY-01 (2008)	2008)		┡		r-YM	MY-02 (2009)				Μ	MY-03 (2010)	10)				MY-04 (2011)	2011)		⊢		ΥW	MY-05 (2012)	2)	
Pattern	Min	u	Max	-	Med	┝	Min	_	Max		Med	Min	u	Max	\vdash	Med	N	Min	Max	, ,	Med		Min	┡	Max		Med
Channel Beltwidth (ft)	50.2	2	134.8	8	95.3		38.7		121.8	6	6.06	50.6	9	133.0		95.2											
Radius of Curvature (ft)	44.9	6	73.6		54.0		37.4		87.0	5	55.2	38.4	4	74.4		53.8				$\left \right $							
Meander Wavelength (ft)	186.6	.6	240.2	2	210.4		189.0	. 4	240.1	2(209.5	190.4	4	238.6		210.4											
Meander Width Ratio	2.2	2	6.0		4.2		1.6		5.1		3.8	2.2	6	5.8		4.1											
Profile	Min	,u	Max		Med	\vdash	Min		Мах	V	Med	Min	u	Max		Med	N	Min	Max	X	Med		Min		Max		Med
Riffle Length (ft)	21.8	8	47.5		29.3		13.1		30.0	2	22.5	12.3	3	29.1		19.7											
Riffle Slope (ft/ft)	0.001	11	0.015	5	0.006		0.002)	0.028	0.	0.018	0.001	11	0.018		0.008											
Pool Length (ft)	25.7	7	85.0	_	43.0		37.5		88.1	5	54.7	14.3	3	69.4		33.6											
Pool Spacing (ft)	49.4	4	138.4	4	85.7		33.7		168.7	8	89.6	49.0	0	149.0		87.5											
Substrate						Н																Η					
d50 (mm)			0.23						0.15					0.62													
d84 (mm)			0.73						0.65					6.73													
Additional Reach Parameters						Н																					
Bankfull Slope (ft/ft)			0.0020	0				0	0.0021					0.0018													
Monitored Channel Length (ft)			2022	0					2053					2073													
Monitored Valley Length (ft)			1277	2					1414					1375													
Sinuosity			1.58						1.45					1.51													
Total Channel Length (ft)			7543	~					7543					7543													
Rosgen Classification			C5						C5					C5													

					1		Table Li	ttle Wh	Morph ite Oa	Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B	nd Hyd Strean	raulic <u>N</u> ı Restor	10nitori ation /]	ing Su D0602	nmary 1-B											
										Reach	Reach R1A (1040 ft)	(040 ft)														
PARAMETERS	0	Cross Section 13 Riffle	on 13																							
Dimension	MYI MY2	2 MY3	MY4	MY5	MY 1	MY2	MY3 N	MY4 M	MY5 MY1	YI MY2	MY3	MY4 N	MY5 M	MY1 MY2	Y2 MY3	MY4	MY5	MY1 N	MY2 N	MY3 MY4	Y4 MY5	75 MY1	1 MY2	MY3	MY4	MY5
BKF Width (ft)	7.8 9.2	2 7.6																								
Floodprone Width (ft)	124.2 125.0	.0 125.0																								
BKF Cross Sectional Area (sq. ft.)	4.2 4.4	1 3.5																								
BKF Mean Depth (ft)	0.54 0.48	8 0.46																								
BKF Max Depth (ft)	0.82 0.77	7 0.85							_																	
Width/Depth Ratio	14.5 19.2	2 16.4																								
Entrenchment Ratio	15.85 13.54	54 16.56																								
Wetted Perimeter (ft)	8.1 9.8	3 7.8																								
Hydraulic Radius (ft)	0.52 0.45	5 0.45												\vdash												
PARAMETERS		10-YM	MY-01 (2008)				N	MY-02 (2009)	(60			N	MY-03 (2010)	(010				MY-04 (2011)	011)		_		0-YM	MY-05 (2012)		
Pattern	Min	M	Max	Μ	Med	Min	u	Max		Med	Μ	Min	Max	_	Med	N.	Min	Max		Med		Min	N	Max	Med	p
Channel Beltwidth (ft)	16.7	23	28.1	23	23.4	13.7	7	25.5		20.3	14	14.9	26.2		19.6											
Radius of Curvature (ft)	8.1	2(20.1	13	13.8	12.9	6	21.2		17.0	13	13.4	22.1	_	17.8											
Meander Wavelength (ft)	60.6	Ϋ́	70.0	66.1	5.1	52.6	9	78.9		66.3	61	61.0	70.0		65.8						_					
Meander Width Ratio	2.1	6	3.6	3.	3.0	1.5	10	2.8		2.2	2	2.0	3.5	_	2.6											
Profile	Min	M	Max	Μ	Med	Min	u	Мах	\square	Med	Μ	Min	Max		Med	N.	Min	Max		Med		Min	N	Max	Med	pa
Riffle Length (ft)	6.8	2	23.7	15	15.8	11.6	9	19.4		14.9	5.	5.3	9.7		7.5											
Riffle Slope (ft/ft)	0.012	0.(0.050	0.0	0.023	0.013	13	0.033		0.022	0.008	08	0.052		0.033						_					
Pool Length (ft)	12.1	5	29.1	15	15.9	11.1	-	24.7		16.6	9	6.8	12.6	-	9.4											
Pool Spacing (ft)	32.5	5.	55.2	43.1	5.1	25.7	7	73.6	_	50.6	2(20.3	52.8	_	34.2											
Substrate																										
d50 (mm)		0.	0.14					0.05					0.04													
d84 (mm)		0.	0.44					0.79					0.20													
Additional Reach Parameters																										
Bankfull Slope (ft/ft)		0.0	0.0114					0.0106					0.0107													
Monitored Channel Length (ft)		5.	501					499					500													
Monitored Valley Length (ft)		3.	380					402					405													
Sinuosity		1.	1.32					1.24					1.23								_					
Total Channel Length (ft)		1(1040					1040					1040													
Rosgen Classification			C6					C6					C6													

								Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B	/III. I le Wh	Morphc ite Oak	ology an t Creek	nd Hyc Streau	ogy and Hydraulic Creek Stream Resto	ule VIII. Morphology and Hydraulic Monitoring Summ Little White Oak Creek Stream Restoration / D06027-B	ring S / D060	ummar 27-B	y											
PARAMETERS		Cross	Cross Section 1	-	\vdash		Cross S	Cross Section 2			Cr Cr	Cross Section 3	ion 3			Cross 5	Cross Section 4			Ū	Cross Section 5	tion 5						Τ
		R	Riffle				P(Pool				Pool				R	Riffle				Pool							
Dimension	IYM	-	-	MY4 N	MY5 M	MY1 M	MY2 M	MY3 MY4	(4 MY5	(5 MYI	1 MY2		MY4	MY5	MY1 N	MY2 M	MY3 MY4	(4 MY5	5 MY1	MY2		MY4	MY5	IYM	MY2	MY3	MY4 1	MY5
BKF Width (ft)	34.0	37.5 2	23.5		2	25.7 2	25.2 23	23.5		27.6	6 26.2	25.7			26.1	26.0 2	26.1		28.0	27.7	27.3		1					
Floodprone Width (ft)	99.7	110.0 9	91.3		11	118.8 11	16.5 11	116.7		150.2	.2 155.3	164.0			120.4 1	120.0 12	120.0		104.6	5 105.0	105.0	(
BKF Cross Sectional Area (sq. ft.)	64.1	64.2 4	44.1		4	49.7 4	44.2 36	36.7		48.7	7 46.9	40.8			52.1	55.4 5	51.8		45.4	46.2	46.8							
BKF Mean Depth (ft)	1.89	1.71 1	1.88		1	1.94 1.	1.75 1.	1.56		1.77	7 1.79	1.59			1.99	2.13 1.	1.99		1.62	1.67	1.71							
BKF Max Depth (ft)	3.23	3.95 3	3.21		4	4.23 3.	3.48 3.	3.51	_	3.49	9 3.79	3.96			3.25	3.74 3.	3.53		3.11	3.09	3.22							
Width/Depth Ratio	18.0	21.9 1	12.5		1	13.2 1	14.4 15	15.1		15.6	6 14.6	16.2			13.1	12.2 10	13.1		17.3	16.6	16.0							
Entrenchment Ratio	2.94	2.93 3	3.89		4	4.63 4.	1.63 4.	4.96		5.45	5 5.93	6.38			4.61	4.62 4.	4.61		3.73	3.79	3.84							
Wetted Perimeter (ft)	34.9	39.3 2	25.0		2	28.6 2	27.1 26	26.3	_	30.0	0 29.0	28.1			27.5	27.6 2	27.9		29.4	. 28.9	28.8							
Hydraulic Radius (ft)	1.84	1.64 1	1.77		-	1.74 1.	1.63 1.	1.39		1.62	2 1.62				1.90	2.01 1.	1.86		1.54	. 1.60	1.62							
			l			l			l						1				ļ		l							1
PARAMETERS		Μ	MY-01 (2008)	2008)		-		MY	MY-02 (2009)	(6(MY-03 (2010)	2010)		╞)- YM	MY-04 (2011)					MY-05 (2012)	(2012)		
Pattern	Min	ц	Max		Med	╞	Min		Max		Med		Min	Max	Ļ	Med	╞	Min		Max		Med	Ň	Min	Max	x	Med	
Channel Beltwidth (ft)	62.5	5	141.1	1	110.6	$\left \right $	57.5		139.1		105.8	9	62.3	139.0	0	105.2												
Radius of Curvature (ft)	41.9	6	79.3	~	54.7	$\left \right $	37.3		77.6		59.4	4	48.0	82.1	-	56.4												
Meander Wavelength (ft)	183.6	9.	258.7	7	236.1		177.2		263.4		236.7	1.	176.1	259.7	7	236.5												
Meander Width Ratio	2.1	1	4.7		3.7		1.8		4.4		3.3	. 1	2.5	5.6		4.2												
Profile	Min	u	Max	, ,	Med	\vdash	Min		Max		Med	V	Min	Max	2	Med	\vdash	Min		Max	1	Med	N.	Min	Max	X	Med	
Riffle Length (ft)	29.7	7	79.1		44.7		20.4		34.7		28.1	2	22.5	38.8	~	32.3												
Riffle Slope (ft/ft)	0.002	72	0.013	3	0.005		0.002		0.006	_	0.004	0.	0.003	0.012	2	0.006												
Pool Length (ft)	35.6	6	94.9	~	57.7		30.6		91.9		50.3	2	20.4	65.3	~	35.2												
Pool Spacing (ft)	108.7	.7	264.9	6	176.3	_	79.6		228.7		147.0	9	61.3	200.1	1	129.4												
Substrate						\vdash											\vdash											
d50 (mm)			0.25	2					0.11					0.45	2													
d84 (mm)			0.76	5					0.38					5.70														
Additional Reach Parameters						\square																						
Bankfull Slope (ft/ft)			0.0014	4				-	0.0014					0.0012	12													
Monitored Channel Length (ft)			2093	3					2112					2103	3													
Monitored Valley Length (ft)			1392	2					1390					1392	2													
Sinuosity			1.50	~		_			1.52					1.51														
Total Channel Length (ft)			7107	7					7107					7107	7													
Rosgen Classification			C5						CS					C5		1												

						ľ			.	÷.	;														ſ
						-	able VI Little	II. MC White	1 able V.III. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2A (336 ft)	ogy and Hydraunc Creek Stream Resto Reach R2A (336 ft)	varaum am Rest A (336 f)	c Monut toration t)	oring S	ummary 127-B											
PARAMETERS	Ū	Cross Section 6 Riffle	9																						
Dimension	MY1 MY2	MY3	MY4 N	MY5 M	MY1 M	MY2 MY3	(3 MY4	MY5	MY1	MY2 MY3	3 MY4	MY5	MY1 1	MY2 MY3	3 MY4	t MY5	MY1	MY2	MY3 N	MY4 M	MY5 MY	MY1 MY2	2 MY3	MY4	MY5
BKF Width (ft)	16.1 16.1	13.4	┝		-																				
Floodprone Width (ft)	40.4 40.6	41.6	-															-							
BKF Cross Sectional Area (sq. ft.)	16.2 15.1	9.4	-															-							
BKF Mean Depth (ft)	1.01 0.94	0.70	-																						
BKF Max Depth (ft)		2.09	-		-																				
Width/Depth Ratio	15.9 17.1	19.2	-		-																				
Entrenchment Ratio	2.51 2.52	3.10	-															-							
Wetted Perimeter (ft)	16.7 16.9	15.1	-																						
Hydraulic Radius (ft)	0.97 0.90	0.62	⊢															╞							
PARAMETERS		MY-01 (2008)	(800;				0-YM	MY-02 (2009)		L		MY-03 (2010)	(2010)				MY-04 (2011)	(2011)				MY-	MY-05 (2012)		
Pattern	Min	Max	Η	Med	Н	Min	V	Max	Med		Min	Max	X	Med		Min	Max	x	Med		Min		Max	N	Med
Channel Beltwidth (ft)	33.9	47.2		39.4	_	35.0	4	48.3	40.5		34.9	48.2	2	40.1											
Radius of Curvature (ft)	21.3	26.8		23.7	_	20.1	τ٩	27.1	22.9		19.1	28.5	5	23.4											
Meander Wavelength (ft)	98.3	105.2	0.	100.6		9.66	1	103.3	101.0		98.4	108.1	Г	101.8						_					
Meander Width Ratio	2.1	2.9		2.4	_	2.2		3.0	2.5		2.6	3.6	5	3.0											
Profile	Min	Max	Η	Med	Н	Min	V	Max	Med		Min	Max	XL	Med		Min	Max	x	Med		Min		Max	N	Med
Riffle Length (ft)	19.2	24.6		22.0		18.2	(1	26.3	21.4		6.6	12.4	4	9.2											
Riffle Slope (ft/ft)	0.007	0.020	_	0.013	_	0.005	0.	0.020	0.012		0.005	0.025	25	0.013											
Pool Length (ft)	18.3	45.0		31.7		13.2	(1	22.1	18.3		7.8	20.2	2	13.8						_					
Pool Spacing (ft)	71.8	133.0	~	102.4	_	47.7	2	93.0	72.7	-	46.5	90.3	3	67.3											
Substrate					Н																				
d50 (mm)		0.24			_		0	0.68				0.05	5												
d84 (mm)		11.30			_		1	11.30				11.30	30												
Additional Reach Parameters					\vdash																				
Bankfull Slope (ft/ft)		0.0108	8				0.1	0.0115				0.0143	43												
Monitored Channel Length (ft)		320			_			321				319	6												
Monitored Valley Length (ft)		246					. 4	248				244	4							_					
Sinuosity		1.30					1	1.30				1.30	0							_					
Total Channel Length (ft)		336						336				336	9												
Rosgen Classification		C5			_			C5		_		C6	5						i				i		

							Tabi	e VIII. ittle W	Morp hite O	Table VIII. Morphology and Hydraulic Monitoring Summary 1 ittle White Oak Creek Streem Besterstion / DK6072.B	nd Hyd Strear	lraulic] n Resto	Monito ration /	ring Su	mmary 77.R											
							-			Reac	R2B (Reach R2B (1474 ft))		a -13											
PARAMETERS		Cross Section 7 Riffle	tion 7																							
Dimension	MY1 M	MY2 MY3	8 MY4	MY5	5 MY1	MY2	MY3	MY4 N	MY5 M	MY1 MY2	2 MY3	MY4	MY5 N	MY1 N	MY2 MY3	3 MY4	t MY5	MY1	MY2	MY3 N	MY4 N	MY5 M	MY1 MY2	(2 MY3	MY4	MY5
BKF Width (ft)	8.7 8	8.3 8.5																								
Floodprone Width (ft)	25.5	24.9 25.1																								
BKF Cross Sectional Area (sq. ft.)	4.5	4.2 4.4																								
BKF Mean Depth (ft)	0.52	0.51 0.51																								
BKF Max Depth (ft)	0.89	0.85 0.84																								
Width/Depth Ratio	16.7	16.2 16.6																								
Entrenchment Ratio	2.93	3.01 2.96																								
Wetted Perimeter (ft)	9.0	8.5 8.9															1			_						
Hydraulic Radius (ft)	0.50	0.50 0.49																								
PARAMETERS)-YM	MY-01 (2008)					MY-02 (2009)	(600;				MY-03 (2010)	2010)				MY-04 (2011)	(2011)		_		ΜΥ	MY-05 (2012)	(
Pattern	Min	1	Max	1	Med	M	Min	Max		Med	V	Min	Max		Med		Min	Max	x	Med	_	Min		Max	V	Med
Channel Beltwidth (ft)	16.9		31.6	. 4	22.8	15	15.1	28.7		21.1	1	16.4	29.1		21.5											
Radius of Curvature (ft)	9.4	. 1	22.2		16.7	11	11.5	23.1		18.0	5	9.5	22.6		16.9											
Meander Wavelength (ft)	59.4	2	68.7	~	64.2	90	60.1	69.8		64.6	5	58.5	79.1		65.5											
Meander Width Ratio	1.9		3.6		2.6	1	1.8	3.5		2.6	Ţ	1.9	3.4		2.5											
Profile	Min	1	Max	~	Med	M	Min	Max	\square	Med	V	Min	Max		Med		Min	Max	x	Med		Min		Max	V	Med
Riffle Length (ft)	1		1		1	5	5.1	10.7		7.8	4)	5.1	10.7		7.8											
Riffle Slope (ft/ft)	1		1		1	0.0	0.013	0.048	~	0.035	0.	0.013	0.048	3	0.035											
Pool Length (ft)	9.6		18.6		15.0	10	13.5	23.6		17.5	-	13.5	23.6		17.5		ĺ									
Pool Spacing (ft)	24.8	-	60.2	4	44.0	3(30.4	55.1	_	42.2	3	30.4	55.1		42.2						_					
Substrate																					_					
d50 (mm)		-	0.04					0.03					0.03													
d84 (mm))	0.38					0.06					0.05													
Additional Reach Parameters																										
Bankfull Slope (ft/ft)		0.	0.0165					0.0164	4				0.0163	3												
Monitored Channel Length (ft)			528					553					517													
Monitored Valley Length (ft)			387					433					405													
Sinuosity		. ,	1.36					1.28					1.28													
Total Channel Length (ft)		1	1474					1474					1474													
Rosgen Classification			C6					C6					C6													

							Ţ	able VI Little	II. Mo White	Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B	y and H eek Stre	lydrau eam Re	lic Mon storatic	itoring n / D00	Summa 5027-B	ıry											
										Rí	Reach R2D (790 ft)	D (790	ft)														
PARAMETERS		Cross Section 8 Riffle	ction 8 le																								
Dimension	MY1 N	MY2 MY3	-	MY4 M	MY5 MY1	1 MY2	2 MY3	3 MY4	MY5	MY1 N	MY2 M	MY3 MY4	(4 MY5	MY1	MY2	MY3 N	MY4 M	MY5 MY1	1 MY2	MY3	MY4	MY5	MY1	MY2 1	MY3 N	MY4 N	MY5
BKF Width (ft)	11.7	10.9 11.1	1																								
Floodprone Width (ft)	9.69	70.0 70.0	0																								
BKF Cross Sectional Area (sq. ft.)	6.7	7.1 6.5	1																								
BKF Mean Depth (ft)	0.57	0.65 0.59	6																								
BKF Max Depth (ft)	1.04	1.05 1.03	3														-										
Width/Depth Ratio	20.6	16.8 18.8	8																								
Entrenchment Ratio	5.94	6.40 6.31	1																								
Wetted Perimeter (ft)	12.1	11.3 1.5	10																								
Hydraulic Radius (ft)	0.55	0.63 0.57	7																								
PARAMETERS		-γM	MY-01 (2008)	08)		Ц		MY-0.	MY-02 (2009)		H		0-YM	MY-03 (2010)		\square		.YM	MY-04 (2011)	(MY-05 (2012)	2012)		
Pattern	Min		Мах		Med		Min	N	Max	Med		Min	Ä	Max	Med	Ţ	Min		Max	V	Med	Min	in	Max		Med	
Channel Beltwidth (ft)	12.0		30.9		23.7		6.7	2	28.7	21.4		11.7	. 1	27.8	21.8	~											
Radius of Curvature (ft)	12.4		20.4		15.1		10.8	2	23.8	15.7		12.0		20.2	15.8	8											
Meander Wavelength (ft)	49.7		67.7		61.6		50.1	9	69.4	61.5		49.5	Ĵ	67.8	61.7	2											
Meander Width Ratio	1.0		2.6		2.0		0.6	. 4	2.6	2.0		1.1		2.5	2.0												
Profile	Min		Мах	Н	Med		Min	N	Max	Med		Min	Y	Max	Med	Ę	Min		Max	V	Med	Min	'n	Max		Med	
Riffle Length (ft)	7.0		14.9		11.4		5.8	1.	12.2	8.1		5.8	1	15.7	10.5	5											
Riffle Slope (ft/ft)	1		;		1		0.011	0.	0.044	0.025	16	0.002	0	0.095	0.027	7											
Pool Length (ft)	12.2		19.7		16.3		8.1	[;]	24.4	16.8		7.0	. 4	20.9	13.6	2											
Pool Spacing (ft)	42.2		51.1	_	44.6	_	27.9	9	66.3	49.4	_	27.3	-1	54.1	42.3	"											
Substrate																											
d50 (mm)			0.14					0	0.16)	0.03													
d84 (mm)			0.41					0	0.42)	0.06													
Additional Reach Parameters																											
Bankfull Slope (ft/ft)		0	0.0124					0.0	0.0125				0.	0.0138													
Monitored Channel Length (ft)			463					4	464				*	466													
Monitored Valley Length (ft)			346					3	345					346													
Sinuosity			1.34					1	1.35				ļ	1.35													
Total Channel Length (ft)			790					7	790					790													
Rosgen Classification		[C5					Ĵ	C5					C6			1		1	1			n			1	

									Export 1						
			White	e Oak	Cree	k Stre	eam R	estora	ation / E	00602	7-B				
Time Point	Segment / Reach	Linear Footage or Acreage	Extr	eme	Very	High	Hi	gh	Mode	rate	Lo	ow	Very	Low	Sediment Export
			ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	tons/yr
	R1	6530			5877	90									455
	R1A	906	906	100											229
	R2	5979	5381	90											767
Preconstruction 2006	R2A	625			625	100									32
2000	R2B	1713					1713	100							120
	R2D	526	526	100											250
	TOTAL	16279	6813	42	6502	40	1713	11	0	0	0	0	0	0	1853
	R1	7543							5280	70	2263	30			189
	R1A	1040									1040	100			1
	R2	7107							7107	100					123
Monitoring Y3 2010	R2A	336									336	100			3
	R2B	1474									1474	100			4
	R2D	790									790	100			22
	TOTAL	18290	0	0	0	0	0	0	12387	68	5903	32	0	0	342
	R1	7543													
	R1A	1040													
Monitoring Y5	R2	7107													
2012 (NOT	R2A	336													
APPLICABLE)	R2B	1474													
	R2D	790													
	TOTAL	18290	0	0	0	0	0	0	0	0	0	0	0	0	0

		X. Verification of Bankfull Events Creek Stream Restoration / D06027-B	
Date of Data Collection	Date of Occurrence	Method	Photo No. (If Available)
8/25/08-8/27/08	Unknown	Crest Guage	N/A
10/13/09 - 10/14/09	Unknown	Crest Guage	N/A
11/01/10 - 11/03/10	Unknown	Crest Guage	N/A

		0	ream Feature V	•		
	Little		eek Stream Re Reach R1 (7543f		0027-В	
Feature	Initial	MY-01	MY-02 ^A	MY-03 ^B	MY-04	MY-05
Riffles	100%	100%	100%	91%	WII-04	WI I -03
Pools	100%	100%	100%	84%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	95%	95%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	95%	88%		
Rootwads	100%	100%	95%	98%		
Rootwads	100 %		each R1A (1040			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
1000000000	10070		Reach R2 (7107f			
Feature	Initial	MY-01	MY-02 ^A	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	WII-04	WI I -03
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	95%	95%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	95%	95%		
Rootwads	100%	100%	95%	95%		
Rootwaas	10070		Reach R2A (336f			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
			each R2B (1474			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
Rootwads	100%	100%	100%	100%		
			Reach R2D (790f			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%		
Pools	100%	100%	100%	100%		
Thalwegs	100%	100%	100%	100%		
Meanders	100%	100%	100%	100%		
Bed General	100%	100%	100%	100%		
Structures	100%	100%	100%	100%		
			· · · · ·			

Notes:

^AThe results shown above as less than 100% percent, reflect the construction of beaver dams on the respective reaches during MY-02 (2009).

^BThe entire project suffered a flood event during MY-03 (2010) causing damage along R1.

	Table XII. Stream Problem Areas (Ye Little White Oak Creek Stream Restoration		
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
Right bench erosion	Approximate station 2+10 -R1-	Flood Event	N/A
Left terrace erosion	Approximate station 3+75 -R1-	Flood Event	Appendix F Photo 1
Left bench and terrace erosion	Approximate station 8+75 -R1-	Flood Event	Appendix F Photo 2
Right bench and terrace erosion	Approximate station 10+96 -R1-	Flood Event	N/A
Left bench and terrace erosion	Approximate station 12+10 -R1-	Flood Event	Appendix F Photo 3
Right terrace and streambank erosion	Approximate station 16+75 to 18+00 -R1-	Flood Event	Appendix F Photo 4
eft bench and terrace erosion	Approximate station 19+10 -R1-	Flood Event	N/A
Left streambank erosion	Approximate station 20+05 to 20+50 -R1-	Flood Event	Appendix F Photo 5
Right bench and terrace erosion	Approximate station 20+25 -R1-	Flood Event	N/A
Right bench, terrace, and streambank erosion	Approximate station 23+90 -R1-	Flood Event	Appendix F Photo 6
Right streambank erosion	Approximate station 25+10 to 25+35 -R1-	Flood Event	Appendix F Photo 7
eft streambank erosion	Approximate station 26+45 to 26+55 -R1-	Flood Event	N/A
Right streambank erosion	Approximate station 26+75 to 27+45 -R1-	Flood Event	Appendix F Photo 8
Right streambank scour	Single Arm Vane Structure Number 26 Approximate station 28+35 -R1-	Flood Event	N/A
Right bench erosion	Approximate station 29+75 -R1-	Flood Event	Appendix F Photo 9
Left streambank scour	Single Arm Vane Structure Number 28 Approximate station 30+25 -R1-	Flood Event	N/A
Left bench and terrace erosion	Approximate station 31+35 -R1-	Flood Event	Appendix F Photo 10
Right streambank erosion	Approximate station 31+15 to 31+75 -R1-	Flood Event	N/A
Right streambank erosion	Approximate station 34+00 to 34+50 -R1-	Flood Event	N/A
eft bench erosion	Approximate station 34+40 -R1-	Flood Event	N/A
Left terrace erosion	Approximate station 36+70 -R1-	Flood Event	N/A
Left bench erosion	Approximate station 39+70 -R1-	Flood Event	Appendix F Photo 11
Right terrace erosion	Approximate station 41+60 -R1-	Flood Event	N/A
eft bench erosion	Approximate station 42+30 -R1-	Flood Event	N/A
Right streambank erosion	Approximate station 43+50 to 44+00 -R1-	Flood Event	N/A
Right bench erosion	Approximate station 44+35 -R1-	Flood Event	N/A
Right streambank erosion	Approximate station 46+95 to 47+30 -R1-	Flood Event	N/A
Right streambank erosion	Approximate station 58+30 to 58+70 -R1-	Flood Event	N/A
Right bench and streambank erosion	Approximate station 61+85 to 62+75 -R1-	Flood Event	Appendix F Photo 12
Right streambank erosion	Approximate station 54+60 to 55+40 -R2-	Flood Event	N/A
eft streambank erosion	Approximate station 56+10 to 57+00 -R2-	Flood Event	Appendix F Photo 13

PROJECT ENGINEER REVISIONS AS-BUILT DRAWINGS DATE BY 3/14/08 JTL

HENDLERS & CONBULTANTS ENGINEERS & CONBULTANTS RELEASE (919) 851:1912 (919) 851:1912 (919) 851:1912 (919) 851:1912 (919) 851:1912 (919) 851:1912 (919) 851:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1912 (910) 951:1 LEGEND JJECT REFERENCE ND. TTLE WHITE DAK CREEK

RAILROADS:

Standard Guage	WSPORT AT ION
RR Signal Milepost	007 35
itch	SWITCH
RR Abandoned	+ +
ROADS AND RELATED FEATURES:	
Curb	
Soil Re	
Existing Cable Guiderail	
TATIC	
	දය %
Single Shrub	÷
	Ju-U-U-
Orchard & &	ය ප
Vineyard	eyard
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert	CONC
Bridge Wing Wall, Head Wall and End Wall - $\int \cos c \omega d r$	CONC WW
MINOR:	
Head and End Wall	UC HW
Pipe Culvert	
Footbridge	Ĭ
÷.	8
Ditch Gutter	
Storm Sever Manhole	ම
Storm Sewer	-s-
UTILITIES:	
POWER:	
Existing Power Pole	
Existing Joint Use Pole	•
Power Manhole	Ð
Power Line Tower	\boxtimes
Power Transformer	Z
UC Power Cable Hand Hole	НН
H-Frame Pole	•
Recorded U/G Power Line	
s Meter	¢
rded U/G Gas Line	. 9
e Ground	c Gas

TELEPHONE

¢	Θ	C.	E	₩	ΗH	ц	TC	T F0		3	8	ŵ	M	A/G Water
Existing Telephone Pole	Telephone Manhole	Telephone Booth	Telephone Pedestal	Telephone Cell Tower	UC Telephone Cable Hand Hole	Recorded UG Telephone Cable	Recorded UG Telephone Conduit	Recorded UG Fiber Optics Cable	WATER:	Water Manhole	Water Valve	Water Hydrant	Recorded U/G Water Line	Above Ground Water Line

⋛

У		\otimes	НН	T	TV F0	•	·	O	ß	-2UTL			AATUR	E.O.I.	\odot	Ð	S	A/G Sanitary Sewer	FSS
TV Satellite Dish	TV Pedestal	TV Tower	UG TV Cable Hand Hole	Recorded U/G TV Cable	Recorded UG Fiber Optic Cable	MISCELLANEOUS: Utility Pole	Utility Pole with Base	Utility Located Object	Utility Traffic Signal Box	Utility Unknown U/G Line	UG Tank; Water, Gas, Oil	AG Tank; Water, Gas, Oil	Abandoned According to Utility Records	End of Information	SANITARY SEWER: Sanitary Sewer Manhole	Sanitary Sewer Cleanout	UCG Sanitary Sewer Line	Above Ground Sanitary Sewer	Recorded SS Forced Main Line

PROPOSED STREAM WORK: STREAM STRUCTURES: Rock Crossvane - - -Rock Vane

J Hook Rock Vane	
Flood Plane Interceptor	
Constructed Riffle	
Root Wad	
Structure Number	
Constructed Flood Plane Interceptor	Interceptor

B

Constructed Bankfull/Top Of Bank Stone Outlet Sediment Trap Fill Existing Stream Channel Permanent Improved Gravel Road Impervious Stream Channel Plug Temporary Gravel Road Old Top Of Bank MISCELLANEOUS: Constructed Thalweg Impervious Dike - - - -Staging Area Proposed Thalweg - -Surface Water Vegetation Plot Old Waters Edge ---Cross Section Waters Edge Vernal Pool STREAM FEATURES: Photo Point

Crest Gauge

 $\left|\right\rangle$

× 0

NOTE: NOT TO SCALE Not all symbols used in plans

BOUNDARIES AND PROPERTY:

Existing Fence	
Proposed Oxbow Wetland Boundary	
Control Point BUILDINGS AND OTHER CULTURE: Sign	-∞ ×
Foundation	

Top Of Bank Swamp Marsh Proposed Lateral, Tail, Head Ditch

			8
			+
		<i></i>	S CO
			Ę.
			8 ≓ 8
			/ + -22 +
88 85 85 85 85 85 85 85 85 85 85 85 85 8	3383		AS- CC-
887 887 887 887 887 887 887 887 887 887	80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010 80 010		IS AS-BUIL T CONDITIONS THE COMPARATIVE OVER 2 + 00
	100 31		₹Ÿο
9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63.2		ILE SHOWN CONTAINS 1+00
01010100 0101100 01011000022 010100022 0101002022 01010002022 010100000000	00660		
999 575626.911 575632.038 575632.038 575637.041 575632.911 575632.911 575637.911 575632.911 575632.911 577321.0368 573361.263 57364.485 573381.0368	942 1189		
989 576322.038 576322.038 576322.038 576322.038 576322.038 576322.038 576322.038 576322.038 576322.038 576327.612 576325.038 573337.513 573345.613 57335.713 57355.71355.71355.71355.71355.71355.71355.71355.71355.71355.71355.71355.71355.71355.	33933.		APPENDIA APPENDIA 00
			∠⊲ O
411 411 411 411 411 411 411 411 411 411		885 880 875	870 865 0-
	20 20	88 88 88 88 88 88 88 88 88 88 88 88 88	o o

Vegetation Plot 1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

01/30/2008

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

-	
	2

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Vegetation Plot 7

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

	9

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 8

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 11

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

 C	
	_
	_

Year 4 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 4 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 4 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Vegetation Plot 19

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Vegetation Plot 23

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Photo Point 1; Looking Downstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 4 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

Photo Point 2; Looking Downstream on Reach R2

Photo Point 2; Looking Upstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking upstream on Reach R2A

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 4 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Photo Point 3; Looking Downstream Along Reach R2B

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

Photo Point 3; Looking Upstream Along Reach R2B

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 3 Monitoring: November 2010

Year 5 Monitoring:

8

Photo Point 3.5Y1; Looking Downstream Along R2&R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Year 4 Monitoring:

Photo Point 3.5Y1; Looking Upstream Along R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 4; Looking Downstream Along R2

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Photo Point 4; Looking Upstream at Confluence of R1&R2

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 5; Looking Downstream Along R2

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 5; Looking Upstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 6; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 6; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

Photo Point 7; Looking Downstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Photo Point 7; Looking Upstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Photo Point 8; Looking Downstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8; Looking Upstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Photo Point 8; Looking Upstream Along R1A

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: November 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Photo Point 9; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Photo Point 9; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 9; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Across Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Photo Point 10; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 3 Monitoring: November 2010

Photo Point 11; Looking Across Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

Photo Point 11; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 11; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

in a start of the start of the

Permanent Cross Section 1

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: October 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring:

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: November 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring:

Year 3 Monitoring: November 2010

Year 5 Monitoring:

As-built Survey: January 2008

Year 1 Monitoring: September 2008

Year 2 Monitoring: November 2009

Year 3 Monitoring: November 2010

Year 4 Monitoring:

Year 5 Monitoring:

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

River Name: Reach Name: Cross Section Name: Survey Date:	R2	Cross Se				?)	
Cross Section Data	Entry						
BM Elevation: Backsight Rod Readi	ng:	0 ft 0 ft					
TAPE FS		ELEV		NOT	E		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		877.077 876.741 876.262 874.161 873.725 873.850 873.734 873.734 872.368 871.827 871.531 871.050 870.820 870.949 870.949 870.330 870.064 870.330 870.064 870.490 871.045 872.702 873.271 873.232 873.452 873.742 873.742 873.742 873.742 873.600 876.528 876.954	2741 2877 2063 517 267 2995 349 7762 2669 2762 2844 2762 2844 2955 281 2956 281 2931 2281 2281 2281 2281 2281 2281 2281 22	GS GS GS B GS SS E GS			
Cross Sectional Geo	metry						
Floodprone Elevation Bankfull Elevation Floodprone Width (f Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq f Wetted Perimeter (f Hydraulic Radius (f Begin BKF Station	n (ft) 87 (ft) 87 t) 91 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nannel 76.48 73.27 L.33 3.46 .89 .88 .21 2.48 4.12 4.97 .77 5.53	Left 876.48 873.27 11.73 1.53 2.81 7.67 17.97 15.11 1.19 45.53		Right 876.48 873.27 11.74 2.23 3.21 5.26 26.15 15.47 1.69 57.26		

End BKF Station	69	57.26	69		
Entrainment Calculations					
Entrainment Formula: Rosgen Modified Shields Curve					
Slope Shear Stress (lb/sq ft) Movable Particle (mm)	Channel O	Left Side O	Right Side O		

River Name: Little White Oak Creek (Year 3) Reach Name: R2 Cross Section Name: (Year 3) Cross Section 2 - Pool (R2) Survey Date: 11/09/2010						
Cross Section	Data Entry					
BM Elevation: Backsight Rod	Reading:	0 ft 0 ft				
ТАРЕ	FS	ELEV	NO	ſE		
$\begin{array}{c} 0 \\ 10 \\ 17 \\ 19 \\ 28 \\ 38 \\ 49 \\ 52.5 \\ 56 \\ 59 \\ 61 \\ 62 \\ 63 \\ 64.5 \\ 65.5 \\ 67 \\ 70 \\ 73.5 \\ 74 \\ 76 \\ 79 \\ 87.5 \\ 93.5 \\ 108.5 \\ 112 \\ 115 \\ 120 \end{array}$		876.084 875.941 875.744 875.744 873.577 873.121 872.659 872.417 872.506 872.355 871.936 871.268 871.268 870.546 869.593 869.593 869.593 869.159 870.573 872.669 873.048 872.679 872.616 875.929 876.360 876.054	231 GS 862 GS 713 GS 689 GS 267 LB 279 GS 024 GS 682 GS 958 GS 923 GS 923 GS 923 GS 761 LEV 694 GS 368 TW 002 LEV 629 GS 596 GS 642 GS 642 GS 059 GS 211 GS	V		
Cross Section	al Geometry					
Floodprone Ele Bankfull Eleva Floodprone Wid Bankfull Width Entrenchment F Mean Depth (fr Maximum Depth Width/Depth Ra Bankfull Area Wetted Perimer Hydraulic Rad Begin BKF Statio	ation (ft) dth (ft) n (ft) Ratio t) (ft) atio (sq ft) ter (ft) ius (ft) tion	Channel 876.18 872.67 116.67 23.5 4.96 1.56 3.51 15.06 36.66 26.32 1.39 52.5 76	Left 876.18 872.67 11.75 0.45 2 26.11 5.28 14.2 0.37 52.5 64.25	Right 876.18 872.67 11.75 2.67 3.51 4.4 31.38 16.13 1.95 64.25 76		

Entrainment Calculations Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Slope 0 0 0 Shear Stress (lb/sq ft) Movable Particle (mm)

River Name: Reach Name: Cross Section Name: (Year 3) Cross Section 3 - Pool (R2) Survey Date: 11/09/2010					
Cross Section Data Entry					
BM Elevation: Backsight Rod Reading:	0 ft 0 ft				
TAPE FS	ELEV	NOTE			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	873.969054 873.666259 873.658087 872.506864 872.248624 872.277731 872.117464 872.127393 871.387219 870.754577 870.335641 869.607094 868.063405 868.241002 868.685863 868.892668 869.016849 869.537405 871.144944 871.397353 872.017843 871.398239 871.509783 875.59945 875.771219 875.900292 873.576144 873.224619 873.365697 874.397008	GS GS GS GS GS GS GS GS GS GS GS GS GS G			
Cross Sectional Geometry					
Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft)	Channel Left 875.98 875.98 872.02 872.02 164 25.7 12.85 6.38 1.59 2.43 3.96 3.96 16.16 5.29 40.82 31.28 28.11 17.23 1.45 1.81	8 875.98			

Begin BKF Station End BKF Station	55.3 81	55.3 68.15	68.15 81
Entrainment Calculations			
Entrainment Formula: Rosge	en Modified	Shields Cur	ve
Slope Shear Stress (lb/sq ft) Movable Particle (mm)	Channel 0	Left Side O	Right Side O

River Name: Little White Oak Creek (Year 3) Reach Name: R2 Cross Section Name: (Year 3) Cross Section 4 - Riffle (R2) Survey Date: 11/09/2010						
Cross Section Data Entry						
BM Elevation: Backsight Rod Reading:	0 ft 0 ft					
TAPE FS	ELEV	NOTE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	874.265195 874.195697 872.042921 871.733904 871.859033 871.525668 871.023839 870.190093 868.885601 868.000976 868.000976 868.129993 868.335711 868.346019 868.881521 869.938739 869.751997 870.245416 872.203095 872.179994 872.123873 873.537267 872.987295 873.07339 872.609835	GS GS GS GS GS BKF GS GS				
Cross Sectional Geometry						
Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	Channel Le 875.06 87 871.53 87 120 26.06 13 4.61 1.99 2. 3.53 3. 13.1 6. 51.82 27 27.86 17 1.86 1. 40.9 40	eftRight75.06875.0671.53871.538.1212.93111.86533.33226.957.7224.17.1317.38621.399.954.0266.95				

Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Slope 0 0 Shear Stress (lb/sq ft) Movable Particle (mm)

Horizontal Distance (ft)

River Name: Reach Name: Cross Section Name: Survey Date: Little White Oak Creek (Year 3) R2 Cross Section Name: (Year 3) Cross Section 5 - Pool (R2) 11/09/2010						
Cross Section Data Entry	/					
BM Elevation: Backsight Rod Reading:	0 ft 0 ft					
TAPE FS	ELEV	NOTE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	871.298724 871.454868 871.303848 870.929709 871.075395 869.723203 869.355633 868.808855 868.606455 867.840918 867.854936 867.467667 867.689128 868.760152 869.571849 869.962148 870.688772 870.968285 871.00457 872.904581 873.387886	GS GS GS GS LB GS GS GS GS TW GS GS S S S S S S S S S S S S S S S S				
Cross Sectional Geometry	/					
ChannelLeftRightFloodproneElevation (ft)873.91873.91873.91BankfullElevation (ft)870.69870.69870.69Floodpronewidth (ft)105Bankfullwidth (ft)27.3113.6513.66EntrenchmentRatio3.84MeanDepth (ft)1.711.641.78MaximumDepth (ft)3.222.873.22width/DepthRatio15.978.327.67BankfullArea (sq ft)46.7522.4524.3WettedPerimeter (ft)28.816.9617.57HydraulicRadius (ft)1.621.321.38BeginBKFStation49.7149.7163.36EndBKFStation77.0263.3677.02						
Entrainment Calculations	;					
Entrainment Formula: Rosgen Modified Shields Curve						

Channel Left Side Right Side

Slope Shear Stress (lb/sq ft) Movable Particle (mm) 0

0

0

River Name: Reach Name: Cross Section Name: (Year 3) Survey Date: Little White Oak Creek (Year 3) Reach (Year 3) Cross Section 6 - Riffle (R2A) 11/08/2010						
Cross Section Data Entry						
BM Elevation: Backsight Rod Reading:	0 ft 0 ft					
TAPE FS	ELEV	NOTE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	880.257537 880.380444 880.380462 880.097987 876.998672 876.395067 876.432554 876.191129 875.836549 875.660304 874.926806 874.18215 873.818284 874.19652 874.597959 874.601007 874.816608 875.313228 875.625679 875.911569 875.911569 876.452247 878.889882 879.680163 879.83018	GS GS GS GS GS GS LB GS GS LEW GS GS GS GS SS SS SS SS SS SS SS SS SS				
Cross Sectional Geometry						
Floodprone Elevation (ft Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	875.91 875.9 41.55 13.41 6.7 3.1 0.7 0.86 2.09 2.09 19.16 7.79 9.39 5.76 15.05 9.44 0.62 0.61 51.59 51.59 64.99 58.29	878 91 875.91 6.7 0.54 1.31 12.41 3.62 8.22 0.44 9 58.29				
Entrainment Calculations						

Entrainment Formula: Rosgen Modified Shields Curve

Slope Channel Left Side Right Side Shear Stress (lb/sq ft) Movable Particle (mm)

River Name: Little White Oak Creek (Year 3) Reach Name: R2B Cross Section Name: (Year 3) Cross Section 7 - Riffle (R2B) Survey Date: 11/09/2010						
Cross Section Data En	try					
BM Elevation: Backsight Rod Reading	0 ft : 0 ft					
TAPE FS	ELEV	NOT	Ε			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	874.803 874.610 874.597 874.560 874.491 874.454 873.927 873.293 872.969 872.731 872.668 872.344 871.815 871.790 871.849 872.008 872.477	251 GS 287 GS 239 GS 95 GS 264 GS 255 GS 297 LB 637 LEW 305 GS 267 TW 961 GS 623 REW 48 GS 695 BKF 116 GS 514 GS 504 GS				
Cross Sectional Geome	 try					
Floodprone Elevation Bankfull Elevation (f Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	Channel (ft) 873.47 t) 872.63 25.05 8.47 2.96 0.51 0.84 16.61 4.36 8.86	Left 873.47 872.63 3.97 0.53 0.84 7.49 2.1 5.04 0.42 50.53 54.5	Right 873.47 872.63 4.5 0.5 0.81 9 2.26 5.44 0.42 54.5 59			

Entrainment Calculations Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Slope 0 0 0 Shear Stress (lb/sq ft) Movable Particle (mm)

River Name: Reach Name: Cross Section Name: Survey Date: Little White Oak Creek (Year 3) R2D Cross Section Name: 11/10/2010 Little White Oak Creek (Year 3) R2D R2D Cross Section Name: 11/10/2010						
Cross Section Data Ent						
BM Elevation: Backsight Rod Reading:	0 ft 0 ft					
TAPE FS	ELEV	NOTE				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	871.542239 871.444674 871.273228 870.972042 870.70704 870.642531 870.635602 870.088088 869.955404 869.606895 869.712753 869.770743 869.783584 869.897699 870.095923 870.425439 870.425439 870.487743 870.988172 870.904198 870.856729 870.774037	GS GS GS GS GS GS EEW GS GS GS REW GS GS REW GS GS GS GS GS GS GS GS GS GS GS GS GS				
Cross Sectional Geomet	Cross Sectional Geometry					
ChannelLeftRightFloodprone Elevation (ft)871.67871.67871.67Bankfull Elevation (ft)870.64870.64870.64Floodprone Width (ft)70Bankfull Width (ft)11.15.235.87Entrenchment Ratio6.31Mean Depth (ft)0.590.70.48Maximum Depth (ft)1.031.030.86width/Depth Ratio18.817.4712.23Bankfull Area (sq ft)6.53.672.83Wetted Perimeter (ft)11.466.336.86Hydraulic Radius (ft)0.570.580.41Begin BKF Station292934.23End BKF Station40.134.2340.1						
Entrainment Calculatio	ons 					

Entrainment Formula: Rosgen Modified Shields Curve

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

River Name: Lit Reach Name: R1 Cross Section Name: (Ye Survey Date: 11/	ar 3) Cross Se	Creek (Year ction 9 - Po	3) Dol (R1)
Cross Section Data Entr	y		
BM Elevation: Backsight Rod Reading:	0 ft 0 ft		
TAPE FS	ELEV	NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 ft ELEV 888.479 888.572 888.511 888.345 887.836 886.538 884.678 883.826 883.175 883.056 882.910 882.700 881.991 880.269 879.618 878.651 878.651 878.651 878.651 878.907 878.928 879.382 879.382 879.625 881.029 881.454 882.050 882.335 882.269 882.269 883.001 884.033 885.011 886.397 887.980 888.442 888.609 888.778	971 GS 8 GS 213 GS 455 GS 73 GS 264 GS 029 LB 422 GS 024 GS 024 GS 034 GS 932 GS 034 GS 932 GS 064 GS 256 GS 813 GS 214 GS 256 GS 813 GS 214 GS 256 GS 817 GS 851 GS 258 GS 747 GS 109 GS 563 GS 946 GS 301 GS 257 GS	
Cross Sectional Geometr	 У		
Floodprone Elevation (f Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio	Channel t) 886.03 882.34 77.32 19.48 3.97	Left 886.03 882.34 14.82 	Right 886.03 882.34 4.66

Mean Depth (ft)	1.82	2.29	0.3		
Maximum Depth (ft)	3.69	3.69	0.66		
Width/Depth Ratio	10.7	6.47	15.53		
Bankfull Area (sq ft)	35.4	34.01	1.39		
Wetted Perimeter (ft)	22	17.95	5.37		
Hydraulic Radius (ft)	1.61	1.89	0.26		
Begin BKF Station	57.02	57.02	71.84		
End BKF Station		71.84	76.5		
Entrainment Calculations					
Entrainment Formula: Rosgen Modified Shields Curve					
Slope	Channel	Left Side	Right Side		
	0	O	O		

Slope	
Shear Stress (lb/sq ft)	
Movable Particle (mm)	

River Name: Little White Oak Creek (Year 3) Reach Name: R1 Cross Section Name: (Year 3) Cross Section 10 - Pool (R1)				
Survey Date:				
Cross Section	Data Entry			
BM Elevation: Backsight Rod	Reading:	0 ft 0 ft		
ТАРЕ	FS	ELEV	NOT	E
$\begin{array}{c} 0 \\ 4 \\ 9 \\ 19 \\ 24 \\ 29 \\ 34 \\ 44 \\ 49 \\ 54 \\ 59 \\ 64 \\ 67 \\ 69 \\ 70 \\ 71 \\ 72 \\ 74 \\ 75 \\ 75 \\ 76 \\ 76 \\ .5 \\ 77 \\ 80 \\ 81 \\ 82 \\ 83 \\ 83 \\ 84 \\ 86 \\ 87 \\ .5 \\ 93 \\ 99 \\ 104 \\ 106 \\ 110 \\ 116 \\ 119 \\ 130 \end{array}$		886.345 885.824 885.824 885.824 885.824 881.698 881.565 881.565 881.767 881.749 881.985 881.749 881.359 881.435 881.435 881.404 881.308 881.315 881.261 880.676 879.311 879.027 878.680 878.549 878.549 878.549 878.334 877.376 877.376 877.387 879.033 879.033 879.391 880.639 882.106 882.088 882.106 882.088 882.106 882.187 883.379	GS386GS386GS386GS346GS258GS258GS365GS774GS276GS774GS515GS598BKF262GS276GS598BKF262GS291GS55GS186LEW399GS244GS255GS263REW325GS263REW367GS318GS318GS314GS207GS107GS416GS029GS	
Cross Section	al Geometry			
Floodprone El Bankfull Eleva Floodprone Wig	ation (ft)	Channel 885.26 881.32 109.06	Left 885.26 881.32 	Right 885.26 881.32

Bankfull Width (ft)	16.69	7.41	9.28	
Entrenchment Ratio	6.53			
Mean Depth (ft)	2.08	1.61	2.45	
Maximum Depth (ft)	3.94	2.91	3.94	
Width/Depth Ratio	8.02	4.6	3.79	
Bankfull Area (sq ft)	34.66	11.91	22.74	
Wetted Perimeter (ft)	20.46	11.24	14.82	
Hydraulic Radius (ft)	1.69	1.06	1.53	
Begin BKF Station	70	70	77.41	
End BKF Station	86.69	77.41	86.69	
			-	

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

RIVERMORPH CROSS SECTION SUMMARY

Cross Section	Little Whi R1 Name: (Year 3) (11/09/2010	Cross Section 12)	L - Pool (R1)
Cross Section			
BM Elevation: Backsight Rod	Reading:	0 ft 0 ft	
ТАРЕ	FS	ELEV	NOTE
0 5 14 19 24 26 29 34 38 42 48 52 56 58.5 59.5 62 63 64 65 65.5 66 67.5 69 71 72 73 74 75 78 79.5 79.5 81 85 86 91 96 101.5 106.5 111.5 116.5 121.5 130		880.401963 878.871729 878.601415 878.455667	GS GS GS GS GS GS GS GS GS GS GS GS GS G
	Cha	annel Left	Right

Maximum Depth (ft)	87.72 26.66 3.29 2.27 4.02 11.74 60.51 29.46 2.05 59.34	16.8 2.42 4.02 6.94 40.74 21.81 1.87	880.43 9.86 2.01 2.84 4.91 19.77 13.34 1.48 76.14	
Entrainment Formula: Rosgen Modified Shields Curve				
Slope Shear Stress (lb/sq ft) Movable Particle (mm)	Channel 0	Left Side O	Right Side O	

River Name: Little White Oak Creek (Year 3) Reach Name: R1 Cross Section Name: (Year 3) Cross Section 12 - Riffle (R1) Survey Date: 11/09/2010					
Cross Section Data Entry					
BM Elevation: Backsight Rod Reading:	0 ft 0 ft				
TAPE FS	ELEV	NOT	E		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	885.050 884.326 883.283 881.855 880.051 879.638 879.710 878.925 879.637 879.364 878.227 877.877 877.585 876.131 875.595 876.041 876.291 876.463 877.444 877.549 877.910 878.122 877.875 878.103 878.122 877.875 878.103 878.434 878.409 878.764 880.078 880.406 880.787 880.646 880.342 882.081 883.663 884.283 884.406	466 GS 684 GS 126 BKF 497 GS 061 GS 67 GS 521 LEW 511 GS 617 TW 597 GS 616 GS 617 TW 597 GS 616 GS 631 REW 347 GS 619 GS 619 GS 619 GS 619 GS 619 GS 149 GS 149 GS 149 GS 149 GS 76 GS 79 GS			
Cross Sectional Geometry		_			
Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft)	Channel 883.68 879.64 80.32 23.05	Left 883.68 879.64 11.29	Right 883.68 879.64 11.76		

Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft)	3.48 1.91 4.04	 2.5 4.04	1.34 2.3		
Bankfull Area (sq ft)	12.07 43.98	28.25	15.73		
Hydraulic Radius (ft) Begin BKF Station	37.5	1.83 37.5	14.63 1.07 48.79		
End BKF Station	60.55	48.79	60.55		
Entrainment Calculations					
Entrainment Formula: Rosgen Modified Shields Curve					
Slope Shear Stress (lb/sq ft) Movable Particle (mm)	Channel 0	Left Side O	Right Side O		

River Name: Little White Oak Creek (Year 3) Reach Name: R1A Cross Section Name: (Year 3) Cross Section 13 - Riffle (R1A) Survey Date: 11/08/2010						
Cross Section Data Er	ntry					
BM Elevation: Backsight Rod Reading	0 ft 9: 0 ft					
TAPE FS	ELEV	/	NOTE			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	887 - 887 - 887 - 887 - 887 - 887 - 887 - 887 - 886 - 886 - 887 -	807646 610973 697326 564138 668765 5075 379413 578973 911016 211508 914573 951896 251344 3577 762267 585651 652452 659217 648803 798802 49785 576212	GS GS GS GS GS GS GS GS UB LEW GS TW REW GS TW REW GS BKF GS GS GS GS GS GS GS GS GS			
Cross Sectional Geome	etry					
ChannelLeftRightFloodprone Elevation (ft)888.61888.61888.61Bankfull Elevation (ft)887.76887.76887.76Floodprone width (ft)125Bankfull width (ft)7.557.020.53Entrenchment Ratio16.56Mean Depth (ft)0.460.490.05Maximum Depth (ft)0.850.850.11Width/Depth Ratio16.4114.3310.6Bankfull Area (sq ft)3.473.440.03Wetted Perimeter (ft)7.787.350.65Hydraulic Radius (ft)0.450.470.04Begin BKF Station55.4455.4462.46End BKF Station62.9962.4662.99						
Entrainment Calculati	ions					

Entrainment Formula: Rosgen Modified Shields Curve

	Channel	Left Side	Right Side
Slope	0	0	0
Shear Stress (lb/sq ft)			
Movable Particle (mm)			

River Name: Little White Oak Creek (Year 3) Reach Name: R1 Profile Name: (Year 3) R1 Long. Profile (STA 14+00 -- 33+74) Survey Date: 11/19/2010

Survey Data

DIST	СН	WS	BKF	LB	RB
1400 1400 1400.69	879.305	880.875		992 OFC	882.297
1401.113 1409.081 1409.332 1426.471	879.022 879.874	880.805		883.956	
1426.577 1427.864 1433.57		880.875		882.949	882.983
1441.8 1441.985	879.386	880.857			
1454.112 1454.254 1454.686	879.12	880.809			883.042
1463.477 1463.922 1463.922	878.738	880.806		882.759	
1478.154 1478.289	880.083	880.821		002.755	892.000
1486.026 1486.879 1501.822 1501.951	880.234	880.629		882.531	883.006
1517.192 1517.25 1520.837	880.133	880.415		882.642	
1531.374 1531.652	879.69	880.414		002.042	
1544.071 1551.119 1551.287		880.102			883.444 878.163
1551.287 1562.002	878.163 879.34				
1562.238 1564.77 1585.017		880.162		883.08 882.414	
1587.148 1587.487		880.109 880.073		0021121	000 67
1588.157 1588.157 1595.411	879.238			882.583	882.67
1606.783 1606.783	879.342	880.043			
1615.292 1628.557 1628.564	879.028	880.061		882.306	
1628.564 1641.237	878.694				882.126
1641.507				881.874	

1641.646 880.028 878.853 1656.86 1657.008 880.043 1662.626 882.166 1665.433 1667.12 880.051 1667.228 879.152 1690.123 880.066 1690.199 879.564 1690.894 882.234 1694.633 1709.874 879.952 1710.052 878.961 1716.208 1720.27 879.926 1720.902 878.918 1720.902 882.741 1730.16 879.734 1730.239 877.723 1732.822 882.314 879.25 1737.917 1738.425 879.745 1739.845 1746.444 882.788 1752.091 879.013 879.676 1752.195 1754.423 882.887 1770.815 878.862 1770.815 882.702 1770.968 879.645 1772.94 878.648 879.619 882.051 882.7 1786.062 1815.892 878.842 1816.845 879.612 1824.917 1841.048 1841.052 879.546 1841.442 878.807 1846.375 882.054 1846.375 879.559 1846.375 878.682 1865.826 882.129 1872.617 878.253 879.545 1873.174 1890.649 1890.649 879.061 1890.9 879.513 1898.914 879.477 1902.577 878.738 1918.921 881.634 1925.352 878.431 1925.352 879.479 1940.392 1940.392 878.381 1940.585 879.5 1945.861 879.349 1946.119 877.702 1953.66 879.338 1953.758 879.007 1972.436 879.303 877.989 1972.763 1972.763 1978.982 882.296 1993.181 879.269 878.645 1993.324 2004.459

882.606

882.74

882.498

882.41

881.679

882.571

882.431

882.105

882.52

881.724

882.71

2016.603 879.222 878.502 2017.185 2033.198 2042.614 879.228 2043.035 878.39 2059.702 879.23 2060.029 878.04 2062.94 2067.685 2072.424 879.171 2072.747 877.944 2078.022 879.203 2078.085 877.934 2091.385 879.202 2091.541 878.579 2100.641 2110.951 878.305 2110.951 2110.951 2123.214 879.131 879.119 2123.574 877.886 2145.681 879.133 2145.853 878.212 2150.155 2159.859 879.117 2160.114 877.917 2163.992 2182.713 879.118 2182.781 878.032 2184.255 2196.945 2200.078 2210.997 878.53 2211.234 879.077 2229.159 878.45 2229.283 879.137 2236.976 2250.308 879.089 2250.36 877.8 2254.085 2255.462 2267.038 2276.365 877.376 879.027 2289.254 877.832 2289.696 879.018 2295.292 2307.732 876.993 2307.942 878.996 2309.872 2323.921 878.25 2324.089 879.019 2326.563 2330.1 2335.793 879.012 877.871 2335.846 2338.949 2351.644 878.827 877.939 2351.899 2357.453 2369.522 2377.29 2383.071 878.791 2383.244 878.799 2383.555 877.84 2395.99 2396.464 878.792

882.255 882.073 882.979 881.99 882.487 882.014 882.098 881.303 881.703 881.393 881.654 881.325 881.205 882.057 882.107 881.316 881.532 881.55 880.843 881.09 880.96 880.918 881.21 880.771 881.431

2396.824 877.869 2418.047 878.785 2418.336 878.008 2425.984 881.141 2427.496 881.182 2431.466 878.781 2432.305 877.969 2441.897 877.19 2441.909 878.576 2449.112 878.214 2449.665 874.949 2459.079 877.168 2459.405 878.167 2463.285 881.224 2475.421 878.174 2475.773 877.314 2481.146 881.185 2499.742 878.183 2499.852 877.142 2511.414 880.587 881.249 2516.866 2520.462 876.914 2520.676 878.042 2537.988 878.072 876.313 2538.706 2543.768 880.807 2548.291 878.088 2548.6 877.374 2574.479 878.053 2574.491 877.177 2577.835 881.059 880.448 2580.252 2585.5 876.971 2586.154 878.028 2600.602 877.156 2600.769 877.973 2615.1 880.658 2628.76 877.385 2628.862 877.983 2637.08 880.421 2643.118 877.881 2643.118 876.751 2663.021 880.612 2663.418 876.919 2663.683 877.901 2670.04 880.656 877.966 2673.994 2673.996 877.448 2688.513 880.791 2690.29 876.914 881.023 2690.513 2690.533 877.817 2709.315 880.846 2717.576 877.918 876.229 2717.99 2720.655 880.678 2729.238 880.548 2731.92 877.885 2736.244 876.406 877.899 880.434 880.575 2760.776 877.88 2761.162 876.695 2765.576 880.653 2768.358 880.068 2781.803 877.829 2782.024 876.545 2791.734 880.242

2803.036 876.881 2803.375 877.791 2813.151 880.054 2825.369 880.344 2827.604 877.818 2828.011 876.836 2838.162 876.72 2838.229 877.791 2842.037 874.763 2842.274 877.685 2851.658 877.683 2851.724 876.969 2856.235 880.283 2858.773 880.09 2875.263 876.375 2875.263 877.638 2887.482 879.782 2887.606 880.431 2893.154 876.44 2893.745 877.632 2913.325 877.625 2913.34 876.957 2916.853 880.382 2922.137 880.191 2944.439 880.148 2944.439 876.79 2944.446 877.727 2955.818 877.676 2955.969 876.369 2956.485 880.184 2969.866 876.747 2969.978 877.643 2985.795 877.639 2985.815 876.982 2995.019 880.076 2996.128 880.49 3010.951 877.639 3011.383 876.567 3020.575 879.984 3039.566 880.189 3045.08 877.632 3062.681 877.629 3063.293 876.405 3072.627 877.593 3073.097 875.797 3073.097 878.949 3104.016 877.584 3104.371 876.983 3104.371 879.928 3114.565 875.753 3114.565 879.7 3114.565 877.571 3118.732 875.596 877.586 880.787 879.637 3127.227 877.549 3127.29 876.751 3128.956 879.606 3144.334 880.318 3157.894 877.547 3158.084 876.799 3162.357 879.25 3180.365 880.175 3187.889 877.563 3188.228 876.378 3206.456 879.582 3215.425 876.663 877.535 3215.466

3218.525				880.185	
3239.168	876.279	077 50			
3239.237 3244.919		877.52		879.984	
3250.606	876.843			075.504	
3250.606			879.391		
3250.73		877.488			
3263.68	976 906		879.337		
3275.18 3275.28	876.806	877.32			
3285.914		077.52		879.763	
3287.759			878.701		
3287.759	876.33	070 000			
3288.604 3294.124	875.067	876.908			
3294.277	075.007	876.153			
3303.856				879.557	
3305.386	074 400	876.088			
3305.512 3324.267	874.489		880.016		
3326.752		876.027	000.010		
3327.441	874.656				
3342.26		075 004	879.684		
3344.049 3344.693	875.178	875.984			
3354.153	075.170	875.959			
3354.235	875.159				
3359.016			070 10	879.38	
3368.195 3374.329		875.94	879.12		
3374.744	875.103	075.54			
3385.978		875.947			
3386.368	874.759		970 920		
3387.669 3393.429			879.839	878.506	
3399.487		875.935		070.900	
3399.887	875.134				
3414.768		975 027	879.317		
3416.719 3416.785	874.489	875.937			
3425.285	0711105		878.868		
3426.289		0== 040		879.615	
3437.443	875.217	875.912			
3437.505 3451.665	874.968				
3452.102	07 11300	875.895			
3456.622			878.626		
3463.885		075 056		879.213	
3473.861 3473.892	874.368	875.856			
3481.772	0711300			879.384	
3485.346			878.474		
3491.48	874.708	075 010			
3491.885 3505.538		875.843	878.217		
3508.578			0/0121/	879.222	
3509.476		875.806			
3509.476	874.884				
Cross Sect	tion / Ba	ank Profile Loc	ations		
Name			Туре		Profile Station
(Year 3) (Cross Sec	tion 9 - Pool	(R1)Pool >	<s< td=""><td>1786</td></s<>	1786
(Year 3) (Cross Sec	tion 10 - Pool	(R1)Pool	XS	2276
(Year 3) (Cross Sec	ction 11 - Pool	(R1)Pool	XS	2736

(Year 3) C	ross Section 12	- RITTIE (RI)RI	TTIE XS	3118
Measuremen	ts from Graph			
Bankfull S	lope: 0.0018	3		
Variable	Min	Avg	Max	
S pool S run S glide P - P Pool lengt Riffle leng Dmax riffle Dmax pool Dmax run Dmax glide Low bank h	49 n 14.29 gth 12.25 e 0 0 0 t 0 t 0 depth measureme	0 0 87.47 33.57 19.69 0 0 0 0	0 0 149.04 69.42 29.05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Reach Name Profile Nam	ne: (Year 3) R1 e: 11/19/2010		-	-74)
$1400 \\ 1409.081 \\ 1426.577 \\ 1441.8 \\ 1454.112 \\ 1463.477 \\ 1478.154 \\ 1501.822 \\ 1517.25 \\ 1531.374 \\ 1551.287 \\ 1562.238 \\ 1587.148 \\ 1587.487 \\ 1606.783 \\ 1628.557 \\ 1641.646 \\ 1657.008 \\ 1667.12 \\ 1690.123 \\ 1709.874 \\ 1720.27 \\ 1730.16 \\ 1738.425 \\ 1752.195 \\ 1770.968 \\ 1786.062 \\ 1816.845 \\ 1841.052 \\ 1846.375$	L EW L EW	ect @ station 1	786.062	

1873.174 1890.9 1898.914 1925.352 1940.585 1945.861 1953.66 1972.436 1993.181 2016.603 2042.614 2059.702 2072.424 2078.022 2071.385 2110.951 2123.214 2145.681 2159.859 2182.713 2211.234	LEW LEW LEW LEW LEW LEW LEW LEW LEW LEW	
2229.283 2250.308 2276.365 2289.696 2307.942 2324.089 2335.793 2351.644 2383.071 2383.244 2396.464 2418.047 2431.466 2441.909 2449.112 2459.405 2475.421 2499.742 2520.676 2537.988 2548.291 2574.479 2586.154 2600.769 2628.862 2643.118 2663.683 2673.994 2690.533 2717.576	LEW LEW XS10 - TW Intersect @ station 2276.365 LEW LEW LEW LEW LEW LEW LEW LEW LEW LEW	5
2731.92 2736.244 2760.776 2781.803 2803.375 2827.604 2838.229 2842.274 2851.658 2875.263 2893.745 2913.325 2944.446 2955.818 2969.978	LEW XS11 - TW Intersect @ station 2736.244 LEW LEW LEW LEW LEW LEW LEW LEW LEW LEW	ŀ

2985.795 3010.951 3045.08 3062.681 3072.627 3104.016 3114.565	LEW LEW LEW LEW LEW LEW LEW					
3118.732 3127.227	XS12 - LEW	ΤW	Intersect	Q.	station	3118.732
3157.894						
3187.889	LEW					
3215.466 3239.237	LEW LEW					
3250.73	LEW					
3275.28						
3288.604 3294.277	LEW LEW					
3305.386	LEW					
3326.752 3344.049						
3354.153	LEW LEW					
3374.329	LEW					
3385.978 3399.487	LEW LEW					
3416.719						
3437.443	LEW					
3452.102 3473.861	LEW LEW					
3491.885	LEW					
3509.476	LEW					

River Name: Little White Oak Creek (Year 3) Reach Name: R1A Profile Name: (Year 3) R1A Long. Profile (STA 0+00 -- 5+00) Survey Date: 11/19/2010

Survey Data

DIST	СН	WS	BKF	LB	RB
0 0 1.708 1.981	891.031	891.923		891.969	891.848
7.68 7.914 15.958 16.377	891.196 891.163 890.742	891.679			
16.413 25.373 30.573		891.585 891.491			891.802
31.022 38.612	890.633	0511151		891.226	
43.97 43.97 57.889	890.983	891.344 890.848			
57.99 71.795 72.169	890.306 890.278	890.764			
73.443 75.74 76.85				891.246	890.665 890.311
86.944 87.342	890.193	890.634			
101.945 102.077 104.65	889.945	890.52			890.499
104.03 109.576 109.718	889.73	890.367			690.499
110.019 122.553	889.806	800 200			890.701
122.553 124.074 129.57	889.805	890.369		890.576	
129.996 136.799 137.654		890.33		890.346	890.267
140.204 140.369	889.839	890.088		0501510	
158.516 158.516 160.72	889.16	889.471			880 420
169.72 171.677 171.734 171.812	888.832	889.175 888.828			889.439
171.812 182.697 182.929	888.646	888.932		889.755	
190.749 190.909	888.504	888.923			

191.852			889.348	
202.444	888.327		005.510	
202.658	0001527	888.759		
214.484		888.669		
214.788	888.308			
220.703		888.549		
220.809	888.083			
228.791		888.547		
228.992	888.448			
232.645				888.785
233.196		888.324		
233.551	888.095			
239.423			888.832	
244.691	887.633			
244.691		888.038		
250.239				888.684
251.685	887.554			
251.752		888.003		
253.563			888.465	
259.325	~~~~	887.884		
259.455	887.529			
270.227	887.392	007 OC		
270.227	~~~ ~~~	887.86		
279.427	887.408	007 007		
279.681		887.867	000 41	
282.454			888.41	000 222
290.354	007 200			888.222
290.354	887.388			
290.422	007 100	887.785		
298.923	887.188	007 0		
299.12		887.8	000 270	
300.881			888.379	887.877
308.888 309.553		887.482		007.077
309.868	887.087	007.402		
321.172	007.007			887.705
323.408	887.153			007.705
323.408	007.133		887.871	
323.663		887.454	007.071	
332.817		TCT.107		887.603
333.892	887.122			007.005
333.892	007.1122	887.376		
342.382		00/15/0	887.771	
343.13		887.331		
343.41	886.866			
343.704				888.02
350.321			887.716	
350.339		887.272		
350.592	886.8			
351.735				888.001
355.896	886.748			
356.269		887.243		
361.464		887.259		
361.855	886.521			
366.475	886.704			
366.475				887.924
366.619		887.189		
371.55	887.004			
371.921		887.225		••••
375.594	886.915	887.212	887.762	887.579
387.527	886.617	007 001		
389.255		887.001	00 -	
396.265		000 000	887.62	
400.128	000 47	886.989		
400.306	886.43			
404.088				887.523

413.779 886.671 414.072 886.97 414.512 887.739 422.017 422.232 886.547 886.962 431.165 886.423 431.681 886.936 442.419 886.931 442.419 886.611 451.303 887.529 451.303 886.428 451.535 886.776 454.111 887.424 458.29 886.836 458.514 470.75 886.618 886.78 470.794 886.621 479.978 887.247 480.054 886.706 886.444 480.582 481.969 887.091 488.069 886.214 488.069 887.198 488.369 886.51 490.847 887.023 496.328 885.927 496.393 886.462 500.621 886.84 886.499 501.622 501.747 886.795 501.747 886.105 Cross Section / Bank Profile Locations Profile Station Name Туре (Year 3) Cross Section 13 - Riffle (R1A)Riffle XS 375 Measurements from Graph Bankfull Slope: 0 Variable Min Avg Мах s riffle 0 0 0 S pool 0 0 0 s run 0 0 0 0 S glide 0 0 0 0 P - P 0 Pool length Ō 0 0 Riffle length Dmax riffle 0 0 0 Ō 0 0 0 0 Dmax pool 0 Dmax run 0 0 0 Dmax glide 0 0 0 Low bank ht 0 0 0 Length and depth measurements in feet, slopes in ft/ft. В RIVERMORPH PROFILE SUMMARY Notes

River Name: Little White Oak Creek (Year 3)

(Year 3) R2 Longitudinal Profile (STA 25+13 -- 45+60)

River Name: Little White Oak Creek (Year 3) Reach Name: R2 Profile Name: (Year 3) R2 Long. Profile (STA 25+13 -- 45+60) Survey Date: 11/19/2010

Survey Data

DIST	СН	WS	BKF	LB	RB
2513 2513	869.834	870.991			
2513 2513.334				873.449	872.486
2525.359 2525.359	868.714			872.267	
2526.388 2527.778		871.11			872.452
2549.761 2552.838		871.178			873.389
2553.774 2553.774 2583.918	869.284			873.623	873.226
2586.041 2587.715		871.057		873.685	075.220
2587.715 2604.391	869.373 869.666			0.01000	
2604.391 2604.391		871.036		873.645	
2608.619 2642.347	870.064	870.82		873.271	873.063 873.735
2677.993 2679.808 2682.045	869.531	870.972			872.553
2682.045 2682.045 2714.73	009.JJT			873.427 873.528	
2718.491 2721.168	869.34	870.939		0751520	
2721.168 2747.834					873.262 873.35
2749.053 2752.321	869.418	870.974			
2756.056				873.597 873.727	
2790.25 2790.25 2829.386	869.56 869.573				873.515
2829.386 2829.386 2833.032	809.373	870.798			873.211
2837.068 2855.351		0/01/90		873.13 873.431	
2858.942 2860.518	869.463	870.805			
2861.693 2888.819					873.168 873.148
2892.536 2892.536	869.742	870.836		070 100	
2892.536 2919.333 2919.333		870.84		873.183 872.932	
				5721552	

2924.183 873.921 2944.19 873.299 2945.328 870.686 2947.401 869.494 2975.615 869.375 2988.27 873.064 2975.615 869.375 2988.27 873.064 2975.615 869.341 3000.958 870.655 3000.958 870.655 301.836 869.294 3028.587 870.662 3031.836 869.294 301.836 869.294 301.836 869.294 301.836 869.159 301.836 869.171 301.836 869.179 301.836 869.179 301.836 869.171 3127.029 870.617 3120.29 870.388 3168.003 869.715 3168.003 869.715 3168.003 869.715 3188.003 872.787 323.357 868.752 323.357 868.752 323.43<	2919.333	869.708			
2945, 328 870.686 872.579 2947, 401 869.494 872.94 2975.615 869.375 873.064 2978.878 870.55 873.064 2977.615 869.371 872.546 3000.958 870.655 873.064 3000.958 870.655 873.106 3000.958 870.662 872.635 3000.958 870.665 873.106 3028.587 870.662 872.635 3031.836 869.294 872.635 3067.691 870.664 873.324 307.1615 870.617 872.625 318.36 869.179 870.617 312.029 869.311 870.282 316.554 870.388 872.787 3168.003 869.715 873.036 3199.076 870.282 872.787 3199.076 870.351 872.787 323.357 868.752 872.403 323.357 868.752 872.403 3255.577 872.862<	2924.183				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			970 696		873.299
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870.080	872 579	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		869.494		072.575	
2978.878 870.55 873.064 2997.657 873.064 2997.657 873.064 3000.958 870.655 3027.106 873.106 3028.587 870.655 3031.836 869.294 3064.177 872.755 3065.68 869.294 3064.177 872.755 3065.68 869.159 307.355 870.664 3073.355 870.664 3073.355 870.664 3073.355 870.664 3073.355 870.664 3073.357 870.664 3073.357 870.664 3073.357 870.664 3073.357 870.617 3132.029 870.388 3166.003 869.715 3168.003 869.715 3168.003 872.787 3233.357 868.752 3233.357 868.752 3233.357 868.79 3233.57 872.403 3272.494 <td< td=""><td>2975.615</td><td></td><td></td><td>872.94</td><td></td></td<>	2975.615			872.94	
2982.37 873.064 2997.657 872.546 3000.958 869.341 3000.958 870.655 3027.106 872.635 3031.836 869.294 3067.691 870.662 3067.691 870.664 307.355 870.664 307.355 870.664 307.355 870.664 307.355 870.664 307.355 870.664 307.355 870.617 3120.726 870.617 3127.972 870.617 3127.972 870.617 3127.972 870.388 3168.003 869.715 3166.029 870.282 3199.076 870.282 3199.076 872.787 3222.49 872.787 323.357 872.403 3233.357 868.752 323.357 870.397 3253.525 870.397 3274.526 868.79 3274.526 868.79 3272.		869.375	070 55		
2997.657 872.546 3000.958 869.341 3000.958 870.655 3028.587 870.662 3031.836 869.294 3064.177 872.635 3067.691 870.662 3067.691 870.664 3073.355 869.473 3067.691 870.664 3073.355 870.664 3073.355 870.664 3073.355 870.664 3073.355 870.664 3073.355 870.664 3073.355 870.617 3120.726 870.617 3122.029 869.311 3120.209 870.388 3168.003 869.715 3168.003 869.715 3199.066 868.949 3222.49 872.787 323.357 868.752 3233.357 868.752 3233.357 868.79 3222.49 872.625 3234.413 870.397 3274.526 868.79 <t< td=""><td></td><td></td><td>870.55</td><td></td><td>873 064</td></t<>			870.55		873 064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3000.958	869.341			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			070 075	872.929	
3028.587 870.662 872.635 3031.836 869.294 872.755 3064.177 869.473 872.755 3067.691 870.664 873.324 3116.413 869.159 870.547 872.669 3120.726 870.617 872.789 3120.726 870.617 872.789 3122.029 869.311 872.787 3165.554 870.282 872.787 3166.003 869.715 872.787 3199.076 868.949 872.787 3222.49 870.351 872.781 3233.357 868.752 872.403 3233.357 868.752 872.403 3233.357 868.752 872.781 3253.525 868.79 872.781 3253.525 868.79 872.625 3269.67 872.749 872.181 308.111 868.707 872.391 308.111 870.335 872.488 3345.168 869.795 872.488 3345.168 869.795 872.181 3345.168 869.795			8/0.655	873 106	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870.662	075.100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3031.836				872.635
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		869.294			070 755
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		860 173			8/2./55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		809.475	870.664		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3073.355				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		869.159	870.547		873.121
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870 617	872.921	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3132.029	869.311	070.017		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3132.029				872.789
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			070 000	872.625	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		860 715	870.388		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		809.715			873.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00 0.40	870.282		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		868.949		872 787	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				072.707	872.781
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3233.357			872.403	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		868.752	070 251		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870.331		872 948
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870.41		0721910
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3253.525	868.395			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3256.577			872.862	072 077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			870, 397		872.077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		868.79	0101331		
3308.111 868.707 3308.111 870.335 3308.111 872.391 3342.062 872.488 3345.168 870.332 3345.168 870.332 3345.168 870.332 3345.168 869.341 3390.501 872.885 3394.136 868.305 3394.136 868.305 3394.888 869.795 3395.849 872.185 3432.977 869.792 3436.213 868.416 3455.756 868.06				872.749	
3308.111 870.335 3308.111 872.391 3345.168 872.488 3345.168 870.332 3345.168 870.332 3345.168 869.341 3390.501 872.885 3394.136 868.305 3394.888 869.795 3395.849 872.185 3432.977 869.792 3436.213 868.416 3455.756 868.06		868 707			872.181
3308.111 872.391 3342.062 872.488 3345.168 870.332 3345.168 869.341 3390.501 872.885 3394.136 868.305 3394.888 869.795 3395.849 869.792 3436.213 868.416 3455.756 868.06		000.707	870, 335		
3342.062 872.488 3345.168 870.332 3345.168 869.341 3390.501 872.885 3394.136 868.305 3394.888 869.795 3395.849 872.185 3432.977 869.792 3436.213 868.416 3455.756 868.06	3308.111		0101000	872.391	
3345.168 870.332 3345.168 869.341 3390.501 872.885 3394.136 868.305 3394.888 869.795 3395.849 872.185 3432.977 869.792 3436.213 868.416 3455.756 868.06	3342.062			872.488	070 040
3345.168 869.341 3390.501 872.885 3394.136 868.305 3394.888 869.795 3395.849 872.185 3428.742 869.792 3436.213 868.416 3455.756 868.06			870 222		872.619
3390.501 872.885 3394.136 868.305 3394.888 869.795 3395.849 872.185 3428.742 869.792 3436.213 868.416 3455.756 868.06		869.341	070.332		
3394.888869.7953395.849872.1853428.742872.2313432.977869.7923436.213868.4163455.756872.6693455.756868.06		0001011		872.885	
3395.849 872.185 3428.742 872.231 3432.977 869.792 3436.213 872.716 3436.213 868.416 3455.756 872.669 3455.756 868.06		868.305	0.00 705		
3428.742 872.231 3432.977 869.792 3436.213 872.716 3436.213 868.416 3455.756 872.669 3455.756 868.06			869.795		977 195
3432.977 869.792 3436.213 872.716 3436.213 868.416 3455.756 872.669 3455.756 868.06				872.231	012.103
3436.213872.7163436.213868.4163455.756872.6693455.756868.06	3432.977		869.792	5. 21251	
3455.756 872.669 3455.756 868.06		0.00 41.0			872.716
3455.756 868.06		868.416			872 660
	3455.756	868.06			012.009
			869.584		

3463.281			872.069	
3477.905		0.00 07	872.516	
3482.549 3484.654	868.265	869.67		
3486.48	000.205			872.236
3502.164				872.278
3502.837	868.591			
3506.463 3509.923		869.613	872.371	
3540.131	868.637		0/2.3/1	
3540.131	000.057		872.574	
3540.774		869.636		
3541.816			072 042	872.046
3581.253 3581.253	868.705		872.043	
3581.253	000.705	869.727		
3585.959				871.885
3624.362	868.063	869.607	872.018	-
3645.959 3651.414		869.315		871.547
3656.305		009.313	871.843	
3656.305	867.927		0/ 110 10	
3689.642				871.02
3690.402		869.437	071 601	
3691.864 3691.864	868.289		871.684	
3733.507	000.205			870.489
3734.503	868.412			
3735.27		869.454	071 005	
3736.937 3771.204			871.895 871.766	
3773.433		869.284	0/1./00	
3775.022	866.773			
3775.022				871.661
3796.58 3796.58	868.033			871.764
3800.99	000.033	869.334		
3809.61			871.827	
3842.045			871.697	
3846.422	867.239	869.245		
3849.396 3851.776		009.245		871.856
3852.542			871.853	0/11050
3854.614		869.314		0 - 1 - 1 0
3857.782 3857.782	967 377			871.512
3886.202	867.277		871.72	
3886.202	868.41		0/11/2	
3886.202		869.371		
3888.625				871.782 871.815
3921.127 3924.98			871.673	0/1.013
3924.98	868.049		071.075	
3926.432		869.274		
3950.133		0.00 1.05		870.699
3952.234 3953.942	865.614	869.105		
3955.797	803.014		871.768	
3979.903				870.605
3980.057	0.00 1.00	869.19		
3981.014 3981.014	868.189		871.853	
4009.738	867.862		0/ I.000	
4009.738			871.625	
4011.842		869.03		070 474
4013.261				870.474

4040.612			871.493	
4040.612	868.084			
4043.542		869.006		071 477
4043.822 4072.772	868 001	868.886	872.203	871.477 871.526
4107.045	000.001	000.000	072.205	871.547
4110.32		868.977		
4113.538 4113.538	868.109		871.162	
4130.595	000.109		871.303	
4135.158		868.955	0/11005	
4138.885	867.348			071 005
4138.885 4163.484			871.002	871.065
4164.621		868.919	071.002	
4168.007				871.24
4168.097	867.176		870.536	
4193.703 4195.382		868.802	070.330	
4201.098		0001002		870.931
4201.098	867.098			071 400
4233.983 4233.983	867.989			871.422
4236.78	007.909	868.816		
4240.742			871.06	
4262.379	067 001			870.961
4262.532 4263.523	867.981	868.825		
4264.793		000.025	871.074	
4288.229		000 05		871.215
4294.065 4294.065	867.828	868.85		
4294.754	007.020		870.832	
4310.311	866.952			
4310.311			870.62	
4312.926 4315.98		868.862		870.448
4340.014				870.991
4344.36		868.716	070 045	
4348.44 4348.44	867.422		870.645	
4374.905	867.622			
4374.905			870.753	
4379.912 4383.567		868.662		870.753
4420.003			871.019	870.733
4421.208	867.867			
4421.478		868.792		
4423.441 4437.49			870.54	870.937
4440.355		868.764	0/0151	
4443.529	0.07 444			870.246
4443.529 4466.365	867.111 867.33			
4466.365	007.55			870.541
4470.793		868.758		
4474.168		060 740	870.59	
4504.463 4509.442		868.743		870.582
4509.442	867.319			5,01302
4521.913			870.741	074 075
4525.447 4564.219	867.468 867.323	868.606	870.689	871.075
4564.219	007.323	868.605		
4564.219				870.789
4571.201			871.533	

4577.503 4580.146	867 877			870.379
4580.146	007.077		871.322	
4580.146		868.61		
4599.377	967 027	0C0 EC1	060 50 0	870.641
4602.905	867.937	000.JOT	869.592	

Cross Section / Bank Profile Locations

Name	Туре	Profile Station
(Year 3) Cross Section 1 (Year 3) Cross Section 3 (Year 3) Cross Section 2 (Year 3) Cross Section 4 (Year 3) Cross Section 5	- Pool (R2)Pool XS - Pool (R2)Pool XS - Riffle (R2)Riffle XS	2642 3116 3624 4072 4525

Measurements from Graph

2978.878

LEW

Bankfull Slope: 0.00116

Variable	Min	Avg	Max
	0.00314 0 0 61.25 20.42 22.46 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00568 0 0 129.41 35.18 32.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.01194 0 0 200.08 65.33 38.79 0 0 0 0 0 0 0 0 0 0 0 0 0
В			

RIVERMORPH PROFILE SUMMARY

Notes

_____ River Name: Little White Oak Creek (Year 3) Reach Name: R2 Profile Name: (Year 3) R2 Long. Profile (STA 25+13 -- 45+60) Survey Date: 11/19/2010 DIST Note -----2513 LEW 2526.388 LEW 2552.838 LEW 2586.041 LEW 2604.391 LEW 2642.347 XS1 - TW Intersect @ station 2642 2679.808 LEW 2718.491 LEW 2752.321 LEW 2833.032 LEW 2858.942 LEW 2892.536 2919.333 LEW LEW 2945.328 LEW

<pre>3116.413 XS2 - TW Intersect @ station 3116 3127.972 LEW 3166.929 LEW 3199.076 LEW 3233.443 LEW 3253.525 LEW 3270.945 LEW 3308.111 LEW 3345.168 LEW 3394.888 LEW 3432.977 LEW 3458.349 LEW 3482.549 LEW 3506.463 LEW 3506.463 LEW 3506.463 LEW 3540.774 LEW 3581.253 LEW 3624.362 XS3 - TW Intersect @ station 3624 3651.414 LEW 3690.402 LEW 3735.27 LEW 3773.433 LEW 3800.99 LEW 3849.396 LEW 3849.396 LEW 3849.396 LEW</pre>
3253.525 LEW 3270.945 LEW 3308.111 LEW 3345.168 LEW 3394.888 LEW 3432.977 LEW 3458.349 LEW 3482.549 LEW 3506.463 LEW 3540.774 LEW 3581.253 LEW 3624.362 XS3 - TW Intersect @ station 3624 3651.414 LEW 3690.402 LEW 3735.27 LEW 3773.433 LEW 3800.99 LEW 3849.396 LEW 3854.614 LEW
3394.888 LEW 3432.977 LEW 3458.349 LEW 3482.549 LEW 3506.463 LEW 3540.774 LEW 3624.362 XS3 - TW Intersect @ station 3624 3651.414 LEW 3690.402 LEW 3735.27 LEW 3773.433 LEW 3800.99 LEW 3849.396 LEW 3854.614 LEW
3482.549 LEW 3506.463 LEW 3540.774 LEW 3581.253 LEW 3624.362 XS3 - TW Intersect @ station 3624 3651.414 LEW 3690.402 LEW 3735.27 LEW 3773.433 LEW 3800.99 LEW 3849.396 LEW 3854.614 LEW
3624.362 XS3 - TW Intersect @ station 3624 3651.414 LEW 3690.402 LEW 3735.27 LEW 3773.433 LEW 3800.99 LEW 3849.396 LEW 3854.614 LEW
3735.27 LEW 3773.433 LEW 3800.99 LEW 3849.396 LEW 3854.614 LEW
3854.614 LEW
3886.202 LEW 3926.432 LEW
3952.234 LEW 3980.057 LEW 4011.842 LEW
4043.542 LEW 4072.772 XS4 - TW Intersect @ station 4072 4110.32 LEW 4135.158 LEW
4164.621 LEW 4195.382 LEW 4236.78 LEW 4263.523 LEW
4294.065 LEW 4312.926 LEW 4344.36 LEW
4379.912 LEW 4421.478 LEW 4440.355 LEW 4470.793 LEW
4504.463 LEW 4525.447 XS5 - TW Intersect @ station 4525 4564.219 LEW 4580.146 LEW

River Name: Little White Oak Creek (Year 3) Reach Name: R2A Profile Name: (Year 3) R2A Long. Profile (STA 0+00 -- 3+26) Survey Date: 01/19/2011

Survey Data

DIST	СН	WS	BKF	LB	RB
0	874.449				077 110
0 0.157				876.887	877.113
0.295 10.55		876.057		876.823	
10.946				070.025	877.378
11.503 11.661	875.005	876.118			
21.753				876.805	
22.299 22.299	875.125	876.082			
25.484					877.149
40.891 41.93		875.987		876.948	
41.93	874.902			0101010	076 040
46.612 49.095				876.987	876.948
51.277	875.185	976 024			
51.943 52.155		876.034			877.117
63.589 63.589	874.891	875.917			
63.589	074.091				876.97
66.304 76.745				877 876.667	
78.276		875.656		070.007	
79.771 79.8	874.507				876.884
87.47	874.113				
87.47 88.148		875.655			877.002
90.897		075.055		876.906	
94.397 94.698	874.161				876.641
94.981	07 11202	875.666			
100.241 100.241		875.45			876.291
100.241	874.1			070 00	
103.015 124.478	873.818	874.927		876.66 875.912	876.191
142.082	873.715				
142.082 142.505		874.481		876.08	
143.171					875.86
151.53 155.677	873.147				875.819
155.677 155.677		874.406		875.664	
168.355		874.164			
168.842				876.007	

168.842 170.417	872.893			875.569				
182.4	873.356			873.309				
182.497 182.515		874.093		875.342				
183.511 197.549				5.342 5.467				
198.161	070 010	874.248	07.	5.407				
198.534 198.534	872.818			875.112				
211.425	070 710		875	5.268				
214.915 215.015	872.712			874.771				
215.667 226.177		873.974 873.716						
226.177				874.65				
226.177 230.893	872.577		874	1.84				
241.876				4.365				
243.176 243.912		873.25		874.319				
243.912	872.369							
256.015 258.712	871.94			874.317				
259.488		873.179	07	4 001				
260.368 270.245			874	4.021 874.202				
273.906	872.237		07	3.882				
273.906 274.558			07.	0.002				
287.185 287.745	872.357		873	3.687				
287.856	072.557	872.627						
289.079 297.85	871.834			874.319				
297.85	071.051		873	3.396				
298.306 298.484		872.744		873.641				
310.486	870.873							
311.484 315.204		872.462		874.69				
316.786				3.868 3.861				
317.284 318.497	871.367		07.	0.001				
Cross Sec	tion / B	ank Profile	location	ıs				
					Profile Station			
Name			Тур					
(Year 3)	(Year 3) Cross Section 6 - Riffle (R2A)Riffle XS 124							
Moocuromo								
Measurements from Graph								
Bankfull Slope: 0								
Variable	Mi 	n 	Avg	Max				
s riffle	0		0	0				
S pool S run	0 0		0 0	0 0				
s glide	0		0	0				
P - P Pool leng	0 th 0		0 0	0 0				
Riffle le Dmax riff	ngth 0		0	0				
UIIIdX ['IIT	le 0		0	0				

Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0
Length and	depth mea	surements in fe	eet, slopes in ft/ft.
В	•		· · ·
		RIVERMORPH P	ROFILE SUMMARY

Notes

River Name: Reach Name: Profile Name Survey Date:	
DIST N	ote
11.661L22.299L40.891L51.943L63.589L78.276L88.148L94.981L100.241L124.478X142.505L155.677L168.355L182.497L198.161L215.667L226.177L243.176L259.488L274.558L287.856L298.484L	EW EW EW EW EW EW EW EW EW EW EW EW EW E

River Name: Little White Oak Creek (Year 2) Reach Name: R2B Profile Name: (Year 2) R2B Long. Profile (STA 9+35 -- 14+86) Survey Date: 11/18/2009

Survey Data

DIST	СН	WS	BKF	LB	RB	Р3	P4
924.61 924.61	877.23			878.28			
924.61		877.98		070.20	0=0.44		
925.679 933.761		877.87			878.11		
935.004 935.004	877.49			878.13			
936.758					878.45		
941.173 943.268	877.58			878.31			
943.795	011100	877.79					
945.385 945.857	877.43	877.7					
953.135 955.511				878.3	878.64		
958.117	070.00	877.31		0/0.5			
958.58 965.379	876.96				878.43		
967.252 968.21	876.81	877.26					
972.1		077.20		878.17			
973.197 976.199		877.17			878.17		
977.147	876.99	••••		070 10			
981.288 987.126				878.19	877.99		
988.087 988.183	876.57	877.06					
990.685	0/015/	077		877.66			
998.28 998.579	876.49	877					
998.862 1002.065				877.44	877.58		
1007.894				877.52	077.50		
1008.257 1008.503	876.63	876.98					
1015.368 1016.127	876.55	876.87					
1016.51	0/0.33			877.37			
1017.003 1028.669		876.51			877.59		
1028.721	876.23			976 06			
1028.721 1034.535				876.96	877.52		
1035.896 1036.589	876.22	876.34					
1042.318	0/0122			876.98	070 04		
1044.857 1044.857	875.75				876.84		
1045.16		875.98					

1051.886			876.43	
1052.112		875.8	070.45	
1053.059	875.62	075.0		
1054.044	075.02			876.51
1064.07			876.46	070.51
1064.07	875.41		070.40	
1064.171	0/3.41	875.77		
1065.01		075.77		876.91
1076.668				876
1080.245	875.41			070
1080.245	0/3.41		876.07	
1080.245		875.59	070.07	
1092.231		075.55		876.05
1095.112	874.78			870.05
1095.112	074.70		875.79	
1095.191		875.25	075.75	
1104.18		075.25		876.21
1104.557		875.11		070.21
1106.005	874.66	075.11		
1106.005	074.00		875.65	
		875.13	075.05	
1118.173		0/3.13		876.46
1118.173	071 52			070.40
1118.173	874.53		076 00	
1121.504			876.08	
1125.567			876.12	070 07
1129.724	074 5			876.07
1129.724	874.5	075		
1129.724		875	070 02	
1137.277		074 00	876.03	
1138.117	074 44	874.82		
1138.117	874.44			075 00
1139.334				875.92
1149.049	074 27		875.7	
1150.107	874.37	074 71		
1151.385		874.71		075 74
1151.478				875.74
1163.11		074 67		875.23
1164.93		874.67		
1169.904	874.07		075 00	
1169.904		074 60	875.28	
1177.929		874.63	075 01	
1179.61	074 40		875.21	
1179.841	874.18			075 0
1183.142				875.2
1192.223		074 50		874.81
1192.323	074 1	874.52		
1193.25	874.1		075 04	
1193.729			875.01	
1206.618			874.93	
1207.98	873.86			a - - a .
1208.38				875.04
1209.471		874.23		
1217.616	873.71			
1217.616				875.11
1217.616		874.18		
1219.635			874.8	
1229.62		874.12		
1229.62	_			874.4
1229.62	873.93			
1230.876			874.46	
1242.49			874.17	
1243.605		873.43		
1243.605	873.17			
1243.605				874.12
1254.865		873.36		
1255.71			873.95	

(Year 2)	 Cross Se	ction 7	- Riffle	(R2R)Ri	ffle xs	 1
Name				Туре		Profil
Cross Sec	tion / B	ank Prof	ile Loca	tions		
1476.969	866.12					
1470.06 1470.809	868.95	870.02			870.15	
1448.881 1468.562		870.02		870.52		
1443.387 1446.568	869.34	070 00			870.34	
1442.854	860 24	00 <i>3</i> . <i>J</i> 2		870		
1433.106 1433.565		869.92			870.54	
1425.579 1428.077	869.21			870.98		
1415.603 1415.603	869.51			870.87		
1415.061		870.09			070.70	
1404.106 1413.858		0.0120		871.14	870.78	
1401.288 1401.304		870.26			870.95	
1390.288 1401.083	869.99 870.1					
1389.809 1390.288		870.56			870.9	
1386.652				871.49	870 Q	
1376.583 1377.717		870.45		871.61		
1375.751 1375.751	870.08				871.29	
1361.215 1361.74				871.76	871.94	
1360.958	870.88	017.00		071 70		
1352.01 1360.588		871.05			872.45	
1349.141 1349.81	871.48	871.64				
1342.305 1349.141				872.9	872.59	
1341.215	011.04	872.04			072 50	
1340.098 1340.623	871.84		5,2115	872.87		
1315.142 1328.975	871.88	872.73 872.14	872.73		872.71	
1315.122 1315.122	872.44				873.37	
1301.036 1311.743				873.64 873.3		
1297.505 1297.505	872.21				873.28	
1295.728	012.04	872.79			072 20	
1279.798 1279.798	872.84			873.67		
1278.311 1279.697		873.1			873.7	
1268.413 1269.283				873.99	873.9	
1265.268	072.05	873.26			072 0	
1263.43 1263.43	872.89			873.97		
1255.71 1256.951	872.9				873.96	
1966 24	072 0					

Name	Туре	Profile Station
(Year 2) Cross Section 7	- Riffle (R2B)Riffle XS	1328

Measurements from Graph

1192.323

1209.471

1217.616

1229.62

1243.605

1254.865

REW

REW

REW

REW

REW

REW

Bankfull Slope: 0.01641 Variable Min Avg Max

 S riffle
 0.01252
 0.03485
 0.04758

 S pool
 0
 0
 0

 S run
 0
 0
 0

 S glide
 0
 0
 0

 P - P
 30.37
 42.24
 55.12

 Pool length
 13.5
 17.51
 23.62

 Riffle length
 5.06
 7.76
 10.69

 Dmax riffle
 0
 0
 0

 Dmax pool 0 Dmax run 0 Dmax glide 0 Low bank ht 0 0 0 0 0 0 0 0 0 Length and depth measurements in feet, slopes in ft/ft. В RIVERMORPH PROFILE SUMMARY Notes _____ River Name: Little White Oak Creek (Year 2) Reach Name: R2B Profile Name: (Year 2) R2B Long. Profile (STA 9+35 -- 14+86) Survey Date: 11/18/2009 DIST Note _____ _____ 924.61 933.761 943.795 REW REW REW 945.385 REW 958.117 REW 968.21 REW 976.199 REW 988.087 REW 998.28 REW 1008.257 REW 1015.368 REW 1028.669 REW 1035.896 REW 1045.16 REW 1052.112 REW 1064.171 REW 1080.245 REW 1095.191 REW 1104.557 REW 1118.173 REW 1129.724 REW 1138.117 REW 1151.385 REW 1164.93 REW 1177.929 REW

1265.268	REW
1279.697	REW
1295.728	REW
1315.142	REW
1328.975	XS7 - TW Intersect @ station 1328
1341.215	REW
1349.81	REW
1360.588	REW
1376.583	REW
1390.288	REW
1401.304	REW
1415.061	REW
1433.565	REW
1448.881	REW
1470.06	REW

(Year 3) R2D Long. Profile (STA 2+84 -- 7+79)
RIVERMORPH PROFILE SUMMARY

River Name: Little White Oak Creek (Year 3) Reach Name: R2D Profile Name: (Year 3) R2D Long. Profile (STA 2+84 -- 7+79) Survey Date: 11/19/2010

Survey Data

DIST	СН	WS	BKF	LB	RB
276.5	869.371				
276.5 276.5		869.996			870.904
278.759 290.016	860 607	869.955		870.852	870.636
298.559	809.007	009.933			870.704
299.905 300.239		869.908		870.437	
300.403	869.442				
308.902 308.902	868.723			870.213	
310.758 313.312		869.863			870.753
330.559					870.763
331.716 331.788	869.502	869.782			
333.038				870.751	870.301
347.678 347.678	868.804				870.301
348.118 349.219		869.751		870.109	
359.131	868.952			0,01100	
359.131 359.331		869.696			870.006
364.333 376.003				870.502 870.043	
378.023		869.656		070.045	
378.144 378.555	869.222				869.92
391.534					869.874
393.84 393.84	868.909			869.938	
394.041 404.799		869.243			869.688
405.936		869.106			009.000
406.049 406.049	868.794			869.602	
418.274 418.274	868.567				869.637
418.416		868.946			869.037
419.683 433.053				869.346 869.48	
437.601	867.923			000110	0.00 1.07
437.601 437.673		868.59			869.187
448.187 448.761		868.599			869.046
448.889	868.017	000.009		000 10-	
449.95 461.898	868.048			869.105	

462.023		868.389		
462.084		000.303		868.811
464.746			869.129	0001011
471.737			868.989	
471.737	867.863			
471.799		868.157		
473.926				868.74
480.264				868.824
483.534		867.992		
483.878			868.753	
483.878	867.287	867.808		
495.885 495.885	867.491	007.000		
496.197	007.491		868.475	
497.293			000.175	868.629
511.558				868.23
511.558	867.287			
511.634		867.61		
513.324			868.024	
520.661			868.066	
521.71		867.108		
521.856	000 700			867.829
521.856	866.796			
535.383	866.514			967 267
535.383 535.797		866.774		867.367
537.972		000.774	868.134	
547.702		866.875	000.134	
548.054		000.075		867.459
548.054	866.755			0071155
550.099			867.733	
554.242				867.526
554.557		866.237		
554.665	865.293			
555.219			867.722	
561.849	005 054		867.544	
563.333	865.254	000 221		
563.375		866.231		067 22
563.415 563.834				867.23 867.36
567.536		866.2		807.30
569.477	865.658	000.2		
569.477	0051050		867.41	
569.477			867.076	
573.034	865.76			
573.317		866.155		
587.857				866.507
588.3		0.00 010	866.777	
588.409		866.013		
588.608	865.736	9CE CC2		
609.591 609.695		865.662		865.878
609.695	865.387			003.070
614.734	003.307		866.132	
625.257			866.12	
628.543			5501 <u>T</u>	866.089
628.543		865.502		
628.543	865.186	-		
638.94		865.484		
639.359			866.028	
639.366	865.176			
641.905		0.05 510		865.989
646.268		865.513		
646.588	865 000		865.894	
647.413 648.452	865.026			866.046
040.472				000.040

659.331		865.415					
659.44	865.057						
659.44 662.366				866.13	865.968		
669.849				865.786	803.900	•	
670.5	865.002			0051700			
670.708		865.173					
670.894					865.845		
682.312 682.312	864.159				866.044	ł	
682.611	004.133	864.87					
686.193				866.009			
696.493	004 550			865.779			
697.906 698.017	864.556	864.744					
699.132		004.744			865.719		
711.112					865.364		
712.439	864.477						
712.439				865.333			
712.511 722.905		864.554		865.233			
722.905	864.083			003.233			
723.453		864.45					
724.203					865.338		
732.937 732.954				865.237	864.799)	
733.409	864.081			003.237			
733.508	0011001	864.222					
735.848				865.483			
736.136	862.683	0.00 704					
736.201 736.419		863.704			864.963		
742.222				865.424	007.303		
747.982					865.428	5	
748.193	863.155	863.496					
Cross Section / Bank Profile Locations							
C1033 Sect			LUCAL	.10115			
Name				туре		Profile Station	
(Voar 3)	ross Sou	 ction 8 - Ri [.]	 fflo	 fig(n2g)	 flo vs	335	
	1055 360		iiie			222	
Measuremer	nts from	Graph					
Bankfull S	long	0					
Balikturi S	stope.	0					
Variable	Miı	า	Avg		Мах		
s riffle	0		0		0		
s pool	Õ		Õ		ŏ		
s run	0		0		0		
s glide	0		0		0		
P - P Pool lengt	0 :h 0		0		0		
Riffle ler	ngth Ö		ŏ		ŏ		
Dmax riffl			0		0		
Dmax pool	0		0		0		
Dmax run Dmax glide	e 0		0		0		
Low bank h	t O		ŏ		ŏ		
Length and depth measurements in feet, slopes in ft/ft.							
В							

RIVERMORPH PROFILE SUMMARY

Reach Name: Profile Nam	Little White Oak Creek (Year 3) R2D Me: (Year 3) R2D Long. Profile (STA 2+84 7+79) 11/19/2010
DIST	Note
290.016 300.239 310.758 331.716 348.118 359.331 378.023 394.041 405.936 418.416 437.673 448.761 462.023 471.799 483.534 495.885 511.634 521.71 535.797 547.702 554.557 563.375 567.536 573.317 588.409 609.591 628.543	LEW XS8 - TW Intersect @ station 290 LEW LEW LEW LEW LEW LEW LEW LEW LEW LEW

RIVERMORPH PARTICLE SUMMARY

Reach Name:	Little White Oak Creek (Year 3) R1 (Year 3) R1 Reachwide Pebble Count 11/03/2010				
Size (mm)	тот #	ITEM %	CUM %		
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$ \begin{array}{r} 24 \\ 1 \\ 9 \\ 14 \\ 13 \\ 17 \\ 1 \\ 4 \\ 6 \\ 6 \\ 4 \\ 3 \\ 0 \\ $	0.98 8.82 13.73	24.51 33.33 47.06 59.80 76.47 77.45 81.37 87.25 93.14 97.06 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00		
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.04 0.28 0.62 6.73 13.53 22.6 23.53 52.94 23.53 0 0				

Total Particles = 102.

River Name: Reach Name: Sample Name: Survey Date:	R1A (Year 3) R1A F		
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	39 0 5 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 78.00\\ 0.00\\ 10.00\\ 6.00\\ 2.00\\ 4.00\\ 0.0$	78.00 88.00 94.00 96.00 100.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.01 0.03 0.04 0.2 0.75 2 78 22 0 0 0 0		

Reach Name: R2	Little White Oak Creek (Year 3) R2 (Year 3) R2 Reachwide Pebble Count 11/03/2010				
Size (mm)	тот #	ITEM %	CUM %		
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	19 4 10 21 11 11 3 5 4 5 4 5 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{r} 19.00 \\ 4.00 \\ 10.00 \\ 21.00 \\ 11.00 \\ 11.00 \\ 5.00 \\ 4.00 \\ 5.00 \\ 4.00 \\ 5.00 \\ 4.00 \\ 5.00 \\ 4.00 \\ 0.0 \\ 0.00 \\ $	$ \begin{array}{r} 19.00\\ 23.00\\ 33.00\\ 54.00\\ 65.00\\ 76.00\\ 79.00\\ 84.00\\ 88.00\\ 93.00\\ 97.00\\ 98.00\\ 100.00\\ 10$		
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Boulder (%) Boulder (%) Bedrock (%)	0.05 0.27 0.45 5.7 13.65 32 19 57 24 0 0				

Total Particles = 100.

River Name: Reach Name: Sample Name: Survey Date:	Little White R2A (Year 3) R2A 11/03/2010	Oak Creek Reachwide	(Year 3) Pebble Count	
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	29 0 5 0 1 2 0 1 1 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58.00 0.00 10.00 2.00 4.00 0.00 2.00 2.00 6.00 6.00 6.00 6.00 0.	58.00 68.00 68.00 70.00 74.00 74.00 74.00 76.00 84.00 90.00 90.00 96.00 100.00	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.02 0.04 0.05 11.3 21.5 32 58 16 26 0 0 0			

River Name: Reach Name: Sample Name: Survey Date:	Little White R2B (Year 3) R2B 11/03/2010			
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$100.00\\0.00\\0.00\\0.00\\0.00\\0.00\\0.00\\0.$	$100.00\\$	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.01 0.02 0.03 0.05 0.06 0.06 100 0 0 0 0			

River Name: Reach Name: Sample Name: Survey Date:	R2D		
Size (mm)	тот #	ITEM %	CUM %
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	46 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92.00 0.00 4.00 0.00 4.00 0.0	92.00 92.00 96.00 96.00 100.00
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.01 0.02 0.03 0.06 0.22 1 92 8 0 0 0 0		

Proje	Project Name:	Little White	nite Oak Creek	sek	Installati	Installation Date:		12/4/2007	007	
Coun	County, State:	Polk Count	Polk County, North Carolina	trolina						
					Year of S	Year of Sampling				
Cres	Crest Gauge Information	mation	2008	2008	2009	2010	2011	2012		
Gauge ID	Bankfull Elevation (ft)	Zero Elevation (ft)	Year 0	Year 1	Year 2	Year 3 ^a	Year 4	Year 5	Total Exceedance by Gauge	Reach
1 ^b	886.12	885.87	N/A	-	1	1	0	0	З	R1 (U/S End)
2	882.04	882.04	N/A	-	+	1	0	0	3	R1A (D/S End)
3 ^b	875.80	875.30	N/A	t-	t-	1	0	0	3	R1 (U/S NC 9)
4 ^b	878.10	877.96	N/A	-	t-	1	0	0	3	R2 (U/S End)
5	876.30	876.26	N/A	0	-	1	0	0	2	R2A (Middle)
9	871.70	871.51	N/A	-	+	1	0	0	3	R2B (D/S End)
γ ^b	869.90	869.14	N/A	-	+	1	0	0	3	R2 (Confluence)
8	866.93	866.67	N/A	0	0	1	0	0	-	R2D (D/S End)
^a A bankfull occ completed subn	^a A bankfull occurrence is documented completed submerged by flood waters.	ited for each gauge l ers.	location durinç	j Year 3 due 1	to evidence of	f extreme floo	ding at the Sit	e. Evidence	A bankfull occurrence is documented for each gauge location during Year 3 due to evidence of extreme flooding at the Site. Evidence of flooding indicated that crest gauges were ompleted submerged by flood waters.	tt crest gauges were
b Gauge was ei requirement of t	ther damaged or mi two bankful occurrer	b Gauge was either damaged or missing following Year 3 flood event. The requirement of two bankful occurrences over the 5-year monitoring period.	3 flood event. monitoring pe	. These gaug riod.	e locations w	ill not be repla	iced or monitc	ared in future	b Gauge was either damaged or missing following Year 3 flood event. These gauge locations will not be replaced or monitored in future years as they have already met the minimum requirement of two bankful occurrences over the 5-year monitoring period.	ady met the minimum