LITTLE WHITE OAK CREEK STREAM RESTORATION

POLK COUNTY, NORTH CAROLINA
CONTRACT \# D06027-B

Prepared For:
Ecosystem Enhancement Program
Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

LITTLE WHITE OAK CREEK STREAM RESTORATION

POLK COUNTY, NORTH CAROLINA
CONTRACT \# D06027-B

ANNUAL MONITORING REPORT (YEAR 3 OF 5)

Owner

NCDENR
Ecosystem Enhancement Program
Department of Environment and Natural Resources
1652 Mail Service Center
Raleigh, NC 27699-1652
EEP Project Manager: Guy Pearce
Phone:
(919) 715-1656

Design and Monitoring Firm

Mulkey Engineers and Consultants
6750 Tryon Road
Cary, North Carolina 27518
Phone: (919) 851-1912
Fax: (919) 851-1918

Project Manager: Wendee B. Smith
Phone:
(919) 858-1833

Project Engineer: Emmett Perdue, PE
Phone: (919) 858-1874

Table of Contents

1.0 Executive Summary 1
2.0 Project Background. 5
2.1 Project Location and Setting 5
2.2 Project Goals and Objectives 5
2.3 Project Restoration Approach and Mitigation Type 6
2.4 Project History 7
2.5 Project Monitoring Plan View 7
3.0 Project Condition and Monitoring Results 8
3.1 Project Vegetation Monitoring 8
3.1.1 Vegetation Monitoring Methodology 8
3.1.2 Vegetation Monitoring Success Criteria 9
3.1.3 Vegetation Monitoring Results for Year 1 of 5 10
3.1.4 Vegetation Monitoring Results for Year 2 of 5 10
3.1.5 Vegetation Monitoring Results for Year 3 of 5 11
3.2 Project Stream Monitoring 12
3.2.1 Stream Monitoring Methodology 12
3.2.2 Stream Monitoring Success Criteria 15
3.2.3 Stream Monitoring Results for Year 1 of 5 16
3.2.4 Stream Monitoring Results for Year 2 of 5 19
3.2.5 Stream Monitoring Results for Year 3 of 5 22
4.0 Project Monitoring Methodology 24
5.0 References 25

Figures

Figure 1. Location Map

Tables

Table I. Project Restoration Approach and Mitigation Type
Table II. Project Activity and Reporting History
Table III. Project Contacts
Table IV. Project Background
Table V. Stem Counts Monitoring Year 3 for Each Species Arranged by Plot
Table VI. Vegetative Problem Areas
Table VII. Baseline Morphology and Hydraulic Summary
Table VIII. Morphology and Hydraulic Monitoring Summary
Table IX. BEHI and Sediment Transport Estimates
Table X. Verification of Bankfull Events
Table XI. Categorical Stream Feature Visual Stability Assessment
Table XII. Stream Problem Areas

Appendices

Appendix A. Monitoring Plan View
Appendix B. Vegetation Plot Photos
Appendix C. Reference Point Photos

Appendix D. Cross Section Photos
Appendix E. Raw Data
Appendix F. Year 3 Areas of Concern Photos

1.0 Executive Summary

This annual monitoring report details the third year monitoring activities and their results for the Little White Oak Creek Stream Restoration Site (LWOC). All of the monitoring activities were conducted and the subsequent results are reported in accordance with the approved mitigation plan (Mulkey Engineers and Consultants, 2008) for LWOC. The content and format of this report were developed in accordance with the contract requirements for the Full Delivery RFP 16-D06027 (NCEEP, 2005). Accordingly, this report includes project background information, project monitoring results, and description of the project monitoring methodology.

Mulkey Engineers and Consultants (Mulkey) submitted LWOC for the Full Delivery RFP 16-D06027 to provide 18,200 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract and began work on the project on May 16, 2007 The primary goals of LWOC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat. These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for 18,290 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

LWOC is located in Polk County, North Carolina near the community of Mill Springs and is situated in the Broad River Basin. Past land use practices, including extensive cattle farming, stream channelization and dredging, and clearing of the riparian buffers resulted in substantial degradation of the stream systems at LWOC. LWOC is comprised of seven stream reaches totaling 18,290 feet of restored stream channel. All of the analyses, design, and restoration at LWOC were accomplished using natural stream channel design methods. In addition to stream channel restoration, the restored stream banks and the riparian and upland buffer areas along LWOC were also replanted with native species vegetation.

The survivability of the planted vegetation at LWOC was monitored at representative vegetation plots as well as project-wide. Stem counts, photo documentation and comparison, and visual assessment were utilized. Bare root stock were planted at a density of 680 stems per acre (8 foot by 8 foot spacing) and live stakes were planted on the stream banks at a density of 1,742 stems per acre (5 foot by 5 foot spacing). A total of 24 representative vegetation plots were installed at LWOC based on the recommendations set
forth by EEP regarding the acreage contained in the conservation easement. The survivability of the planted woody vegetation at LWOC was monitored using annual stem counts at each of the plots. In addition to the stem counts, annual photos were taken at each of the plots and also from 14 other permanent photo reference points. The vegetation plot photos were used for photo documentation and comparison of the vegetation growth at each plot. The photo documentation at the reference points were employed to assist in a projectwide visual assessment of the vegetation at LWOC. Survivability will be based on achieving a minimum of 320 stems per acre after Year 3 and 260 stems per acre after Year 5, across the project site. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to insure survival throughout a complete growing season while still allowing for relative ease in identification.

In late August 2008, the vegetation monitoring for Monitoring Year 1 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 24 vegetation plots having a survivability of planted woody stems ranging from 438 to 1000 stems per acre, with an average survivability of 713 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC will meet the success criteria outlined above for Year 3 and Year 5. The comparisons of the baseline and Monitoring Year 1 photos at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points strongly complemented this suggestion, as no concerns, problems, or negative trends were documented. Similarly, the project-wide visual assessment provided further validation, as no vegetation problem areas were observed.

In mid-October 2009, the vegetation monitoring for Monitoring Year 2 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 24 vegetation plots having a survivability of planted woody stems ranging from 367 to 1000 stems per acre, with an average survivability of 670 stems per acre. As with the previous year, the results indicated the survivability of the planted woody vegetation at LWOC will meet the success criteria outlined above for Year 3 and Year 5. The comparisons of the baseline and Monitoring Year 2 photos at both the 24 vegetation plot photo reference points and the 14 permanent photo reference indicated the vegetation is moving in a positive direction. The project-wide visual assessment provided validated this positive trend, as no vegetation problem areas were observed.

In early November 2010, the vegetation monitoring for Monitoring Year 3 was conducted using the methodologies described above, including stem counts, photo documentation, and visual assessment. The stem counts resulted in the 24 vegetation plots having a survivability of planted woody stems ranging from 327 to 917 stems per acre, with an average survivability of 557 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC met the success criteria outlined above for Year 3 and is on track to meet the criteria for Year 5. The comparison of the Monitoring Year 3 photos with all prior photos at both the 24 vegetation plots and the 14 permanent photo reference points indicated the vegetation is growing as expected. The vegetation is becoming well established and is steadily outcompeting many of the pioneer species such as grasses, briers,
and weeds. The project-wide visual assessment also validated this positive trend, as no vegetative problem areas were observed.

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored to evaluate the success of stream restoration at LWOC. The limits of the project stream reaches to be monitored at LWOC were determined using the sampling rates outlined by the USACE et al. (2003). The monitoring was conducted using annual field surveys, pebble counts, crest gage recordation, visual assessment and photo documentation. Baseline conditions for comparison of the stream parameters to be monitored were established from data gathered immediately after construction through the as-built survey process. Longitudinal profiles and Modified Wolman pebble counts were conducted for all reaches and a total of 13 permanent cross sections were surveyed and photo documented across LWOC. A total of eight crest gages across LWOC were installed for hydrologic monitoring to verify the occurrence of bankfull storm events. Annual photo documentation was used for stream monitoring to complement and validate the other stream monitoring practices from 14 permanent reference photo points. Annual project wide visual assessment was conducted using field observation and pedestrian surveys to identify any specific problem areas. Since it is only required during Monitoring Year 3 and Monitoring Year 5, the BEHI information was collected during this year. Stream restoration success at LWOC was evaluated by comparison of the annual monitoring results against those same parameters as predicted, specified, and required in the proposed design and as implemented during the construction process represented by the as-built or baseline conditions. Success was achieved when all such comparisons reveal positive trends toward overall stream stability.

In late August 2008, the stream monitoring for Monitoring Year 1 was conducted using the methodologies described above. The results of the stream dimension, pattern, and profile monitoring demonstrated that all of the reaches were experiencing the expected minor adjustments indicative of movement toward increased stream stability and were attributed to vegetation establishment and natural channel adjustments. Fluctuations in bed materials were expected to occur during the early years following construction. Fining of the bed materials was documented by the stream bed material monitoring. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. However, the monitoring results suggested on-site sediment supply from LWOC has been reduced as a result of the restoration. Fluctuations in bed materials are likely to continue and several years may be needed to observe a consistent bed material. Data collected at six of the eight on-site crest gauges provided evidence indicating a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 1. This documented the first of two required bankfull events over the five year monitoring period in order to achieve success with regards to hydrologic monitoring at LWOC. No stream problems were documented through the photo documentation comparison process. However, the project-wide visual assessment conducted along each of the project stream reaches revealed 12 specific stream problem areas which included in-stream structure failures and associated stream bank erosion, areas of floodplain and adjacent stream bank erosion, and an area of stream bank erosion. Mulkey elected to promptly address all of the observed stream problem areas and conducted construction repairs of each in October 2008.

All of the in-stream structures and the areas of floodplain and stream bank erosion were repaired. The repairs to the all of the areas of eroded stream banks included re-grading, reseeding with appropriate temporary and permanent seed, re-installing coir fiber matting, and re-planting with live stakes. Upon completion of the repair work, LWOC experienced no other stream problem areas and was deemed a success for Year 1 Monitoring.

In mid-October and early November 2009, the stream monitoring for Monitoring Year 2 was conducted using the methodologies described above. The results of the stream dimension, pattern, and profile monitoring demonstrated that all of the reaches were experiencing the expected minor adjustments indicative of movement toward increased stream stability and were attributed to vegetation establishment and natural channel adjustments. Fluctuations in bed materials were expected to occur during the early years following construction. Fining of the bed materials was documented by the stream bed material monitoring. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. However, the monitoring results suggested on-site sediment supply from LWOC has been reduced as a result of the restoration, particularly from increased native vegetation and soil stabilization. Fluctuations in bed materials are likely to continue and several years may be needed to observe a consistent bed material. Data collected at seven of the eight on-site crest gauges provided evidence indicating a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 2. This documented the second of two required bankfull events over the five year monitoring period in order to achieve success with regards to hydrologic monitoring at LWOC. No stream problems were documented through the photo documentation comparison process. However, the projectwide visual assessment conducted along each of the project stream reaches revealed 3 specific stream problem areas, all of which are associated with beaver dams constructed along reaches R1 and R2. Mulkey is actively coordinating with the United States Department of Agriculture (USDA) Wildlife Services under their Beaver Management Assistance Program (BMAP) to have the beavers and beaver dams removed, as well as to have site monitored for future beaver activity.

In early November 2010, the stream monitoring for Monitoring Year 3 was conducted using the methodologies described above. Despite the site suffering a flood event from the remnants of a tropical storm, the overall stability of the six stream reaches has improved. The stream dimension, pattern, and profile remained consistent with the previous years' data and continue to remain within the tolerances of the design parameters. The bed material in the larger streams is beginning to coarsen to the projected design values while the smaller streams remain finer than anticipated. It must be noted that along R1 the visual assessment indicated multiple areas of bank, bench, and terrace scour. The scour was confined to R1 as there was no presence of scour along the other five reaches though they experienced the same event as indicated by the absence of the crest gauge or direct measurement of the crest gauge on each respective reach and apparent deposition of sediment on the benches. Although mostly along the terrace, Mulkey intends to repair the scour areas in early 2011 to ensure an ample amount of time is available for the regrowth of vegetation in the areas where significant disturbance will occur. However, even with this disturbance along R1, the Bank Erosion Hazard Index (BEHI) and Near Bank Shear stress (NBS) evaluation of all
reaches showed a significant reduction in sediment supply throughout the entire stream network.

As a note, Mulkey performed the required fence relocation to encompass a minimum 50 foot buffer as requested by NCEEP in late Spring of 2010. These changes are reflected on the plan sheets in Appendix A.

Therefore, it is the determination of Mulkey, the LWOC has proven to be an overall success in both vegetative and stream monitoring for Year 3 monitoring (2010). Both the vegetative and stream monitoring depict a stable stream system despite being impacted by flood flows. As mentioned, Mulkey intends to correct several areas of scour, however these areas are restricted to the floodplain benches and terraces which did not reflect negative trends under the monitoring guidance.

2.0 Project Background

2.1 Project Location and Setting

The Little White Oak Creek Stream Restoration Site is located in Polk County, North Carolina approximately 2.5 miles east/southeast from the community of Mill Springs along NC Highway 9 South, and approximately 0.5 mile northwest from the intersection of NC Highway 9 South and US Highway 74 (Figure 1). LWOC is situated in the Broad River Basin 8-digit cataloging unit of 03050105 and the 14-digit cataloging unit 03050105030010. Mulkey proposed to provide 18,200 Stream Mitigation Units (SMUs) with LWOC under the Full Delivery RFP 16-D06027 issued by the Ecosystem Enhancement Program Department of Environment and Natural Resources (NCEEP). Mulkey acquired and installed permanent fencing along an easement covering 55.3 acres, which encompasses the restored streams and associated buffers at LWOC.

2.2 Project Goals and Objectives

The primary goals of LWOC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat.

These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for 18,290 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

2.3 Project Restoration Approach and Mitigation Type

LWOC is comprised of three main reaches (R1, R2 Upper and R2 Lower) and four tributaries (R1A, R2A, R2B and R2D). Prior to construction, these seven reaches were identified and proposed for restoration due to their distinct stream characteristics and drainage areas. These seven existing reaches totaled approximately 15,487 linear feet. A total of 18,290 linear feet of stream channel was restored at LWOC within the 55.3 acre conservation easement.

Analyses, design, and restoration of the stream channels at LWOC was accomplished using Natural Stream Channel design methods developed by Rosgen (Rosgen, D. L., 1994, 1996, 1998). The proposed Rosgen channel type for two of the tributaries (R2A and R2B) was a C 4 channel. The restoration of these tributaries was implemented using Priority Level I and II methodologies. The proposed stream classification for the majority of the reaches (R1, R1A, R2 Upper, and R2 Lower) was a C5 channel. A combination of Priority Level I and II methods were used to construct these reaches. The remaining reach (R2D) was proposed to be a C6 channel using the same methods previously mentioned.

The most significant stream restoration component at LWOC involved the reconstruction of each of the stream reaches such that stream flows greater than bankfull are allowed to access the restored stream's floodplain. Two different approaches were used to insure such floodplain access. The first approach involved relocating and raising the stream bed such that the historic floodplain is accessed by stream flows greater than bankfull (the sections of the project stream reaches that were restored using Priority Level I methodologies). A second approach was used where site constraints prevented such relocation and raising of the stream bed. Therefore the second approach involved building a floodplain at a level lower than the historic floodplain through the construction of bankfull benches (the sections of the project stream reaches that were restored using Priority Level II methodologies). Instream structures were installed along each of the stream reaches to provide grade control and stream bank protection, and to increase in-stream habitat diversity. The in-stream structures installed included rock cross vanes, j-hook rock vanes, rock vanes, constructed riffles, and root wads. Stream banks were further stabilized through the installation of coir fiber erosion control matting, temporary and permanent seeding, and the installation of native species vegetation in the form of transplants, live stakes, and bare root stock. All areas of the site that were disturbed during construction activities were stabilized using temporary and permanent seeding. The riparian and upland buffer communities along LWOC were also restored with native species vegetation using a target community which will emulate the Piedmont/Low Mountain Alluvial Forest described by Shafale and Weakley (1990). The conservation easement was fenced to permanently protect the restored stream and buffer areas. Information regarding the restoration approach and mitigation type for each of the seven project stream reaches is detailed in Table 1.

2.4 Project History

The existing conditions at LWOC prior to restoration were a result of cattle use for the past 50 years. When Mulkey initially became involved with this project, there were approximately 200 livestock (cattle and horses) utilizing the pastures. The livestock had never been fenced from any of the stream channels within LWOC. This continual livestock access to the streams resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and heavy siltation throughout LWOC, as well as reduced water quality due to large quantities of fecal matter into the stream system. Based on information gained from the property owner, it was determined that many of the streams at the LWOC, particularly the smaller tributaries, were historically maintained through channelization, dredging, and clearing of the riparian buffer. As a result of these land and water quality issues, Mulkey submitted LWOC for the Full Delivery RFP 16-D06027 to provide 18,200 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the NCEEP and began work on the project on May 16, 2007. The project activity and reporting history are detailed in Table II. Table III lists the contacts for the designer, contractor, relevant suppliers, and monitoring firm for LWOC. Table IV provides a complete listing of project background information.

2.5 Project Monitoring Plan View

Mulkey conducted monitoring baseline surveys along the entire length of each of the restored project stream reaches using total station survey equipment. These surveys were conducted to establish and document baseline conditions for the newly restored stream channels for future monitoring activities. As-built drawings were developed using the results of the monitoring baseline surveys. These drawing depicted the post construction condition of LWOC and are included in Appendix A. The as-built drawings consisted of plan sheets that include the following:

- Title sheet
- Legend sheet
- As-built planimetric drawing developed from aerial photography of LWOC after the completion of construction
- As-built planimetric drawings and profiles developed from the baseline monitoring field surveys

The as-built drawings illustrate the location of all major project elements, including, but not limited to the:

- Restored stream channel thalweg, normal edges of water, constructed bankfull channel limits, and the constructed cut slope limits
- Conservation easement boundaries
- Permanent fencing limits
- Topography
- In-stream structures
- Photo points
- Crest gages
- Vegetation plots locations
- Permanent cross sections
- Project survey control
- Monitoring profile survey limits
- Relevant structures and utilities

3.0 Project Condition and Monitoring Results

3.1 Project Vegetation Monitoring

3.1.1 Vegetation Monitoring Methodology

The survivability of the planted vegetation at LWOC, including both woody and herbaceous species, was monitored at representative vegetation plots as well as project-wide. Monitoring at representative vegetation plots focused primarily on planted woody vegetation and was conducted using stem counts and photo documentation. Project-wide monitoring of planted vegetation included both woody and herbaceous species and was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction was completed during the last week of November 2007. Throughout construction, appropriate temporary and permanent seeding was conducted to stabilize areas disturbed during construction. Appropriate existing native species vegetation was also salvaged, where feasible, in the form of transplants and live stakes, throughout the construction process. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of November and December 2007. These remaining plant materials consisted of native species bare root seedlings and live stakes and were installed, as appropriate, to restore the riparian and upland buffer communities along LWOC within the conservation easement area. A complete listing of the planting zones, their corresponding acreages, and the corresponding vegetation species was included in the approved mitigation report (Mulkey Engineers and Consultants, 2008). The bare root stock were planted at a density of 680 stems per acre (8 foot by 8 foot spacing) and the lives stakes were planted on the stream banks at a density of 1,742 stems per acre (5 foot by 5 foot spacing).

An As-Built Survey was initiated immediately following the installation of plant materials. In December 2007, during the as-built survey and after the completion of planting, a total of 24 representative vegetation plots (vegetation plots 1 through 24) were installed randomly across LWOC. An iron pipe was installed at each plot corner for monumentation and a polyvinyl chloride (PVC) pipe, along with a label specifying the plot number, was also installed at one of the corners of each plot. The plot corners were strategically located such that each plot has a total area of approximately 100 square meters. Between January and February 2008, after the establishment of the plots, all stems contained in the plots were identified and tallied by species and plot, then marked with loosely tied survey flagging (on lateral branches) to facilitate future identification. This data was recorded to provide the
baseline survivability. The survivability of the planted woody vegetation at LWOC for the various monitoring periods was then calculated using annual stem counts at each of the plots and compared to the baseline data. During each of the annual stem counts, the planted stems were re-flagged as required to ensure that all planted stems were accounted for and considered in the survivability calculations. In addition to the stem counts, photos were taken at each of the plots. Where necessary, the corner of each plot was remarked with PVC pipe and the plot number relabeled. This PVC plot corner was used as the reference point from which the annual vegetation plot photos were taken such that the photos at each plot will have the same orientation. The photos were compared to the photos from the previous years to validate and document vegetation success. In addition to the photo reference points established at each of the vegetation plots, a total of 11 additional permanent photo reference points were installed across LWOC. Subsequently, three additional permanent photo reference points (photo points $2.5 \mathrm{Y} 1,3.5 \mathrm{Y} 1$, and 8.5 Y 1) were added during the Year 1 monitoring period to ensure adequate photo documentation would be conducted within the monitoring limits of the project stream reaches. These additional permanent photo reference points were monumented using steel rebar and PVC pipe. Photos were taken from each of the 14 permanent photo reference points with the same orientation each applicable year and used for photo documentation and annual comparison of the vegetation growth across LWOC. This exercise helped to further validate and document vegetation success at LWOC. Between January and February 2008, after installation of the described 11 permanent photo reference points, photos were taken from each of the permanent photo reference points to document the baseline conditions at LWOC with regards to planted vegetation. Monitoring Year 1 and Monitoring Year 2 photos were taken from all 14 photo points during the visit in August 2008 and October 2009, respectively. Project-wide visual assessment was also used for vegetation monitoring at LWOC. A visual assessment was conducted using annual field observation and pedestrian surveys to identify any specific vegetation problem areas at LWOC during the monitoring period. Any problem areas where vegetation was lacking or exotic vegetation was present, was identified and categorized as bare bank, bare bench, bare floodplain, or invasive population. Such areas were documented using representative photos and their locations were identified on the Monitoring Plan View.

3.1.2 Vegetation Monitoring Success Criteria

Vegetation success at LWOC was determined by stem survivability. Successful survivability is dependent upon achieving at least 320 stems per acre after three years and 260 stems per acre after five years across the project site. Therefore, survivability rates exceeding these requirements in previous years were deemed successful. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification. As described above, photo documentation and visual assessment was used to complement the stem counts as part of the vegetation monitoring protocol at LWOC. If during any given year, the planted species survivability was not anticipated to meet the final criteria established for vegetation; supplemental plantings were considered. In the event this occurred, a remedial planting plan was developed to achieve the survivability goals established for Years 3 and 5 .

3.1.3 Vegetation Monitoring Results for Year 1 of 5

In late August 2008, the vegetation monitoring for Monitoring Year 1 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at LWOC for Monitoring Year 1. Stem counts were conducted at each of the 24 vegetation plots and the results are summarized in Table V. Photos were taken from the photo reference points at each of the 24 vegetation plots. Appendix B compares these photos with the initial baseline photos taken from the photo reference points at each of the 24 vegetation plots. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points and provided the baseline photos for the 3 points installed during the Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment. The results of the Monitoring Year 1 stem counts showed that the 24 vegetation plots had successfully achieved the survivability of planted woody vegetation with stem counts ranging from 438 to 1000 stems per acre, with an average survivability of 713 stems per acre. The results indicated the survivability of the planted woody vegetation at LWOC should meet the success criteria defined in Section 3.1.2. During the stem counts, it was noted no significant volunteer woody species were observed at any of the 24 vegetation plots. The comparison of the baseline and Monitoring Year 1 photos at both the 24 vegetation plot photo reference points and the 11 permanent photo reference points strongly complemented this suggestion, as no concerns, problems, or negative trends were documented. The project-wide visual assessment provided further validation, as no vegetation problem areas were observed. Based on the results of the vegetation monitoring for Monitoring Year 1 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.4 Vegetation Monitoring Results for Year 2 of 5

In mid-October 2009, the vegetation monitoring for Monitoring Year 2 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 2. Stem counts were conducted at each of the 24 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes and compares the results of the initial stem counts from the original planting, the previous years, and Monitoring Year 2. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected photos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points from Year 0 and the photos from the 14 total permanent photo reference points in Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI. The results of the Monitoring Year 2 stem counts continued to display successful survivability in all 24 vegetation plots with the counts ranging from 367 to 1000 stems per acre and an average survivability of 670 stems per acre. Therefore survivability of the planted woody vegetation at LWOC should meet the success criteria
established in Section 3.1.2. Similar to Monitoring Year 1, no significant volunteer woody species were observed at any of the 24 vegetation plots. The comparison of the Monitoring Year 2 photos to those previously collected at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points suggested the vegetation was growing exceptionally well. Live stake vegetation has exceeded growth expectations and the bare root material is starting to overcome the weedy vegetation. A further review of the vegetation through the project-wide visual assessment validated this positive trend, as no concerns, problems, or negative trends were documented. Based on the results of the vegetation monitoring for Monitoring Year 2 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.5 Vegetation Monitoring Results for Year 3 of 5

In early November 2010, the vegetation monitoring for Monitoring Year 3 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section were used for the vegetation monitoring at LWOC for Monitoring Year 3. Stem counts were conducted at each of the 24 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes and compares the results of the initial stem counts from the original planting, the previous years, and Monitoring Year 3. Photos were taken from the photo reference points at each of the 24 vegetation plots and are compared to the previously collected 0photos in Appendix B. Photos were also taken from each of the 14 permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original 11 permanent photo reference points from Year 0 and the photos from the 14 total permanent photo reference points in Monitoring Year 1. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas and is summarized in Table VI. The results of the Monitoring Year 3 stem counts continued to display successful survivability in all 24 vegetation plots with the counts ranging from 327 to 917 stems per acre and an average survivability of 557 stems per acre. Therefore survivability of the planted woody vegetation at LWOC meets the success criteria established in Section 3.1.2. for Year 3 and is on track for success in Year 5. Additional uncounted volunteer woody species were observed at all of the 24 vegetation plots. The comparison of the Monitoring Year 2 photos to those previously collected at both the 24 vegetation plot photo reference points and the 14 permanent photo reference points suggested the vegetation was growing exceptionally well. Live stake vegetation has exceeded growth expectations and the bare root material is starting to overcome the weedy vegetation. A further review of the vegetation through the project-wide visual assessment validated this positive trend, as no concerns, problems, or negative trends were documented. Based on the results of the vegetation monitoring for Monitoring Year 3 at LWOC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring. The only additional plantings that will be utilized are associated with the repair work discussed in Section 3.2.5.

3.2 Project Stream Monitoring

3.2.1 Stream Monitoring Methodology

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored to evaluate the success of the stream restoration activities at LWOC. The monitoring of stream dimension, pattern, and profile, or morphometric monitoring, along with the monitoring of stream bed material, were conducted using annual field surveys along with visual assessment. The morphometric, stream bed material, and stream bank stability monitoring were conducted along representative sections of the project stream reaches. Hydrologic monitoring consisted of field measurements of bankfull events using crest gages. Project-wide stream monitoring was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction were completed during the last week of November 2007. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of November and December 2007. The as-built survey of all of the stream reaches at LWOC were initiated immediately following the installation of plant materials and were conducted utilizing aerial photography and total station surveys while following the protocols set forth by the 2003 USACE Stream Mitigation guidelines (USACE et al., 2003). In addition to documenting the construction of LWOC for comparison to the proposed design, the results of the as-built survey were also used to establish baseline morphology for the proposed monitoring. This information is presented in Table VII. A summary of the restored stream channel lengths are outlined in Table I. A complete set of As-Built Drawings including a monitoring plan view and longitudinal profile for the as-built conditions of the restored channels can be found in Appendix A. After the completion of the as-built survey, the limits and corresponding lengths of the project stream reaches to be monitored at LWOC were determined using the sampling rates outlined by the USACE et al. (2003). A total of 5,893 linear feet (32%) of all restored stream channels will be surveyed annually during the monitoring period. Based on these the sampling rates, the limits of the project stream reaches to be surveyed annually for monitoring are as follows:

Reach R1 - 1,974 Linear Feet Total (Stations 14+00-R1- through 33+74-R1-)
Reach R1A - 500 Linear Feet Total (Stations 0+00-R1A- through 5+00-R1A-)
Reach R2 - 2,047 Linear Feet Total (Stations 25+13-R2- through 45+60-R2-)
Reach R2A - 326 Linear Feet Total (Stations 0+00-R2A- through 3+26-R2A-)
Reach R2B - 551 Linear Feet Total (Stations 9+35-R2B- through 14+86-R2B-)
Reach R2D - 495 Linear Feet Total (Stations 2+84-R2D- through 7+79-R2D-)
The upstream and downstream limits of these reaches were monumented in the field using steel rebar/PVC pins. Each pin was also labeled with an aluminum tag identifying the respective reach and the correct descriptor ("begin" or "end").

A total of 13 permanent cross sections, consisting of both riffles and pools, were established across LWOC and surveyed during the as-built survey process. The number of cross
sections was determined using the sampling rates outlined by the USACE et al. (2003). The left and right ends of each cross section were monumented with a steel rebar pin and PVC pipe. An aluminum tag identifying the cross section number was also installed at the pin on the left side of the channel. In addition to the cross section surveys, photos were taken at each of the 13 cross sections, looking across the stream from left to right, to document the baseline conditions at each respective cross section. Specific stations along each permanent cross section were established during the as-built survey to promote replication and consistency during the subsequent annual cross section surveys. The stationing for each cross section was established to always begin on the left side of the channel, facing downstream, at the left rebar/PVC pin, and to continue across the stream channel to the rebar/PVC pin on the right side. The as-built survey of the 13 cross sections established the baseline conditions with regards to stream dimension. All of the 13 cross sections will be surveyed each year during the five-year monitoring period and the resulting parameters will be compared annually. The parameters to be monitored include bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. Annually, photos will be taken at each of the 13 cross sections looking across the stream from left to right and compared to the photos from the previous years to document stream conditions at each respective cross section.

The pattern for all of the stream reaches was surveyed and baseline conditions were established as part of the as-built survey. Monitoring surveys for stream pattern are limited to the project stream reaches specified above for annual monitoring surveys. The stream pattern parameters resulting from the annual monitoring surveys include sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. These parameters will be compared annually.

The as-built survey included a longitudinal profile survey along the entire length of all restored stream reaches. Longitudinal profiles were surveyed by identifying each stream feature (riffle, run, pool, or glide) and surveying specific points at each feature. These specific locations included top of bank, bankfull, water's edge or surface, and thalweg. The as-built survey were used to establish the baseline conditions with regards to monitoring the longitudinal profile within the project reaches described above. The longitudinal profiles surveys conducted each year are then limited to the project stream reaches specified above. The parameters resulting from these longitudinal profile surveys are compared on an annual basis to those of the baseline and previous years. The parameters to be monitored include bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing.

During the as-built survey, Modified Wolman pebble counts were conducted at each of the project stream reaches to classify the stream bed materials. The pebble counts for the larger project stream reaches (R1 and R2) were conducted at each of the permanent cross sections by performing an equal number of counts at each cross section and then combining the results into a reach-wide count. A minimum of 100 counts were made for each of these larger reaches. Reach-wide pebble counts were conducted along the smaller project stream reaches (R1A, R2A, R2B, and R2D). A minimum of 50 counts were made for each of these smaller reaches. The stream bed materials are monitored at LWOC by repeating the same
pebble count procedures on an annual basis. The results of the pebble counts for each specified project stream reach are compared on an annual basis.

BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information served as baseline data for stream bank stability at LWOC. Stream bank stability monitoring using these parameters is required in Monitoring Year 3 and 5. Data collected during these years will be compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both the stream bank erosion rates and sediment transport rates at LWOC are expected as a result of restoration and will be documented as described to demonstrate success.

A total of eight crest gages, one at each reach and one at the confluence of Reaches R1 and R2, were installed across LWOC during the as-built survey. At the base of each crest gage a permanent vertical datum was installed. The locations of each crest gage along with the elevation of the permanent vertical datum were surveyed during the as-built survey. The crest gages were used for the hydrologic monitoring at LWOC to verify the occurrence of bankfull storm events. Each crest gage was set during its initial installation and baseline photos were taken. The crest gages were checked annually and the flood stage(s) recorded by each gage and measured relative to the permanent vertical datum of the respective gage. The results of these measurements were used to document the occurrence of significant storm events, with the goal of specifically documenting the occurrence of bankfull and larger stream flow events.

Photo documentation and project-wide visual assessment was used for stream monitoring at LWOC to complement the other stream monitoring practices. A total of 14 permanent reference photo points were installed across LWOC (11 during the as-built survey and 3 during the Year 1 monitoring period as described above). These photo points were monumented using steel rebar/PVC pins. Photos were taken at that time to provide photo documentation of baseline stream conditions. Photos were taken from each of the 14 permanent photo reference points with the same orientation each year and were used for photo documentation and annual comparison of the stream conditions across LWOC. This exercise helped to further validate and document stream restoration success at LWOC. The visual assessment was conducted using annual field observations and pedestrian surveys to identify any specific problem areas along the streams at LWOC during the monitoring period. Any such problem areas were identified and organized under appropriate categories. Such areas were documented using representative photos, where applicable, and their locations were mapped on the Monitoring Plan View. The suspected cause and appropriate remedial action for each problem was determined. If during any given year, the streams were not anticipated to meet the final established monitoring criteria, corrective actions were considered. Such modifications were documented and discussed with EEP.

3.2.2 Stream Monitoring Success Criteria

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology were monitored annually for the project stream reaches as described in detail above. Stream restoration success at LWOC was evaluated by comparison of the annual results against the same parameters as predicted, specified, and required in the proposed design. Success was achieved when all such comparisons reveal positive trends toward overall stream stability. Expectation was the stream monitoring results should confirm the stream channels at LWOC are of the proposed stream channel type (Rosgen 1994).

Stream dimension parameters including bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius were measured and/or calculated for each of the permanent cross sections. The described dimension parameters were expected to remain consistent from year to year and should fall within the ranges established by the original proposed design parameters. It was expected and acceptable that minor adjustments in dimension will occur such as the development of point bars and the subsequent deepening of pools. As vegetation becomes established and the stream banks are stabilized, the anticipation was that the width depth ratios will decrease and the entrenchment ratios will increase slightly, both within the normal ranges for C and E stream channel types (Rosgen, 1994).

Stream pattern parameters including sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio were measured and/or calculated. Stream pattern measurements were expected to remain consistent from year to year and to fall within the originally proposed design parameters. As vegetation becomes established and the stream banks are stabilized, it was anticipated that the sinuosity of the streams will also adjust, likely becoming more sinuous with time.

Stream longitudinal profile parameters including bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing were measured. Longitudinal profiles parameters were expected to remain relatively consistent from year to year. The stream profiles should not show aggrading or degrading conditions during the five-year monitoring period, however, minor profile adjustments such as deepening of pools was expected.

Stream bed material was monitored using the described Modified Wolman pebble counts. The success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely occur during the early years following construction and several years may be needed to observe a consistent bed material. Bed materials should ultimately reflect the proposed design conditions for each reach at LWOC.

Stream bank stability will be monitored using BEHI and sediment transport estimates during Monitoring Years 3 and 5. Data collected during these years will be compared with preconstruction conditions to determine the change in bank erosion hazard indices and sediment
export rates for each reach assessed. Positive change, namely reduction, in both stream bank erosion rates and sediment transport rates at LWOC are expected as a result of restoration and will be documented as described to demonstrate success.

Hydrologic monitoring success was based on the ability to document the occurrence of bankfull storm events at LWOC. A minimum of two bankfull events, each occurring in two separate monitoring years, are required to be documented within the five-year monitoring period. The described crest gauges were used to determine and document the occurrence of these bankfull events.

As described above, photo documentation and visual assessment was used to complement the other stream monitoring practices as part of the stream monitoring protocol at LWOC. If during any given year, the streams were not anticipated to meet the final established monitoring criteria, corrective actions was considered. Such modifications were documented and discussed with EEP.

3.2.3 Stream Monitoring Results for Year 1 of 5

In late August 2008, the stream monitoring for Monitoring Year 1 was conducted. The methodologies described in the Section 3.2.1 were used for the stream monitoring at LWOC for Monitoring Year 1. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring. The results of these surveys were compared to the baseline data for the morphometric monitoring obtained during the as-built survey.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 1 with the initial baseline photos at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 1 and baseline conditions along with the raw data for each cross section. The comparison of the baseline and Monitoring Year 1 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments including decreasing width to depth ratios, increasing entrenchment ratios, and minor increases in depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the Year 1 Monitoring cross section photos to the as-built cross section photos strongly complemented these suggestions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally
proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included slightly increasing radii of curvature, indicative of movement toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment included deepening of pools. The comparison of the baseline and Monitoring Year 1 longitudinal profiles did not show excessive aggrading or degrading. Overlays can be found in Appendix E along with the raw data from both the baseline and Monitoring Year 1 conditions.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials were expected to occur during the early years following construction. This expectation was observed in comparing the results of the baseline and Monitoring Year 1 pebble counts. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. This trend may be observed during the five-year monitoring period. At this time it is believed that the original assumption that the stream bed materials would coarsen after restoration may have been incorrect. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. The monitoring results do suggest, however that on-site sediment supply from LWOC has been reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at LWOC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the eight crest gages were checked during the Monitoring Year 1 surveys to monitor hydrology at LWOC. Six of the eight crest gages recorded flood stages in excess of the bankfull stage. The two crest gages that did not record flood stages in excess of the bankfull
stage were the crest gages at Reaches R2A and R2D. The crest gage at Reach R2A apparently did not record any evidence of a flood stage event, possibly due to problems with the cork or the gage itself. The crest gage at Reach R2D recorded a flood stage that was 0.26 feet below the bankfull stage. Each of the crest gages was reset after checking stage measurements, in order to record future events. Table X lists the information related to the verification of bankfull events at LWOC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 1. This documentation of the first bankfull event at LWOC during the monitoring period suggests success with regards to hydrologic monitoring at LWOC.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 1 stream monitoring practices. Photos were taken from each of the original 11 permanent photo reference points. Three additional photo points (photo points 2.5 Y 1 , 3.5 Y 1 , and 8.5 Y 1) were also added to ensure that adequate photo documentation would be conducted within the monitoring limits of the project stream reaches. Photo point 2.5 Y 1 was added for Reach R2, photo point 3.5Y1 for Reach R2B, and photo point 8.5 Y 1 for Reach R1A. After installation, photos were taken at each of the three added photo points. Appendix C includes all of the described photos and provides comparison of the photos with the initial baseline photos taken from the 11 permanent photo reference points. The new photos taken at three additional photo points will serve as supplemental baseline condition photos and subsequent photos at these same locations will be compared in Monitoring Years 2 through 5. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. The project-wide visual assessment revealed 12 specific stream problem areas. Each of these stream problem areas, including their description, location, and suspected cause, are listed in Table XII. The stream problem areas included eight in-stream structure failures and associated stream bank erosion, three areas of floodplain and adjacent stream bank erosion, and one area of stream bank erosion. Mulkey elected to promptly address all of the stream problem areas and conducted construction repairs of each in October 2008. The eight stream problem areas categorized as failures of in-stream structures and were determined to be caused by incorrect construction of the given in-stream structure. The failed in-stream structures included j-hook rock vanes and rock cross vanes. All eight of the structures and the associated areas of stream bank erosion were repaired. Several of the j-hook rock vanes were converted to rock vanes during the repairs to prevent future point bar erosion. The three stream problem areas categorized as floodplain and adjacent stream bank erosion were determined to be attributed to the incorrect installation of floodplain interceptors. All three of the eroded areas were repaired and floodplain interceptors were installed using both rock and log materials. The remaining stream problem area categorized as stream bank erosion was determined to be caused by a minor field adjustment made to the stream alignment in order to save an existing mature tree at the request of the landowner. This area of stream bank erosion was also repaired. The repairs to the all of the areas of eroded stream banks included re-grading, re-seeding with appropriate temporary and permanent seed, and re-installing coir fiber matting. Black willow (Salix nigra) and/or silky dogwood (Cornus amomum) live stakes were harvested on-
site and were installed at the repaired stream banks. Please note that the results shown in Table XI were updated such that the repairs to the stream problem areas described above are included. Based on the results of the stream monitoring for Monitoring Year 1 at LWOC, as well as the subsequent corrective actions taken, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.4 Stream Monitoring Results for Year 2 of 5

In mid-October and the beginning of November 2009, the stream monitoring for Monitoring Year 2 was conducted. The methodologies described in the Section 3.2.1 were used for the stream monitoring at LWOC for Monitoring Year 2. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring. The results of these surveys were compared to the previous data collected during prior monitoring periods, baseline conditions established through the as-built survey, and to the proposed design parameters calculated prior to construction.

All of the 13 cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 2 with the initial baseline photos and the previous monitoring photos taken at each of the 13 cross sections. Appendix E provides an overlay of the Monitoring Year 2, the previous monitoring periods, and baseline conditions along with the raw data for each cross section. The comparison of Monitoring Year 2 to the previous surveys for stream dimension data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. Throughout all the cross sections, the bankfull cross sectional area and entrenchment ratios remained consistent indicating the channels were able to contain and convey all the flows experienced during Monitoring Year 2. However, the main channels R1 and R2 displayed typical signs of adjustment in their channel geometries. Both of these reaches have recently been impacted by beavers and some of these adjustments can be attributed to this recent development. In particular on R1, cross section 11 had a significant increase in the width to depth ratio due to the backwater of a downstream beaver dam causing the pool to experience siltation. On the other end, cross section 12 experienced the reverse because a beaver dam was located directly upstream and the cascading water created scour ultimately decreasing the width to depth ratio. Similarly, cross sections along R2 exhibited localized changes in channel geometries, some attributable to beaver activity and others to natural fluctuations, but all within the acceptable ranges of the design parameters. The one exception was cross section 1 , with a width to depth ratio climbing up to 22 and the bankfull cross sectional area remaining consistent, a cursory analysis raised concern. However, the overlay of cross section 1 clearly demonstrated the channel developing opposing inner berms to better accommodate the low flow capacity. This effectively allowed the channel to deepen without creating a change in the cross sectional area causing the width to depth ratio to increase instead of decrease due to the derivation being based on the calculated value of mean depth. The results of the smaller tributaries R1A, R2A, R2B, and R2D consistently exhibited minor natural adjustments typical of stable C type streams. The comparisons of the Monitoring Year 2 overlays and
cross sectional photos to the previous year's strongly substantiated these findings, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radii of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the Year 2 monitoring data to previous years stream pattern data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches remained consistent to the design parameters with minor variations attributed to vegetation establishment, natural channel adjustments, and variance in measuring techniques. These minor variations can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. In comparing the data collected from Monitoring Year 2 to the previously collected data, the results followed the previous analysis. All reaches showed acceptable minor variations in all parameters monitored. These variations are within the design tolerances and are attributable to vegetation establishment, natural channel adjustments, and variance in measuring techniques. Overall, none of the longitudinal profiles showed excessive aggrading or degrading. Overlays of the longitudinal profiles can be found in Appendix E.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials and for comparison to the previous years' conditions. The results of the pebble counts are presented in Table VIII while the raw data and overlays of the percent accumulation graphs can be viewed in Appendix E. Fluctuations in bed materials were expected to occur during the early years following construction. Over time the expectation was for the stream to eventually coarsen, however, Monitoring Year 1 and Year 2 have shown the opposite to be true. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. Therefore it is believed that the original assumption that the stream bed materials would coarsen after restoration may have been incorrect. The stream systems at LWOC appear to be sand-dominated and therefore coarsening of the bed may not occur. Nonetheless, the monitoring results do suggest on-site sediment supply from LWOC was reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as
baseline data for stream bank stability at LWOC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the eight crest gages were checked during the Monitoring Year 2 surveys to monitor hydrology at LWOC. Seven of the eight crest gages recorded flood stages in excess of the bankfull stage. The one crest gage that did not record a flood stage in excess of the bankfull stage was at Reach R2D. Although, the region has seen a significant drought, the site has received large quantities of rain this monitoring year. Additionally, the R2D reach has a constant flow of water throughout its course. The crest gage at Reach R2D recorded a flood stage that was 0.10 feet below the bankfull stage this monitoring year. This information coupled with the other seven gauges having recorded a bankfull event during this monitoring year suggested that Mulkey needs to recheck the R2D crest gage in 2010 for elevation discrepancies with regard to its zero elevation. All of the crest gages were reset after checking stage measurements, in order to record future events. Table X lists the information related to the verification of bankfull events at LWOC for Monitoring Year 2 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at LWOC during Monitoring Year 2. This documented the second and final required bankfull event at LWOC and therefore demonstrated success with regards to hydrologic monitoring per Section 3.2.2.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 2 stream monitoring practices. Photos were taken from each of the 14 permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos between the baseline conditions, Monitoring Year 1 and Monitoring Year 2 photos taken from the 14 permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas (Table XI). During the project-wide visual assessment, along with the other Monitoring Year 2 field work activities, Mulkey noticed a significant increase in beaver activity at the site. Specifically, beaver dams have been constructed along Reaches R1, R2 Upper, and R2 Lower in several locations. Please note that Table XI and Table XII have been updated to reflect these observations. Mulkey is currently coordinating with the USDA Wildlife Services under BMAP to have the beavers and beaver dams removed, as well as to have the site monitored for future beaver activity. Mulkey has also observed cattle intrusion into the fenced buffers at LWOC. Mulkey is working with the landowner to prevent future cattle trespass from occurring. Other field observations made during the Monitoring Year 2 include the observation of the apparent restoration of wetland hydrology adjacent to Reach R1A. The restoration of Reach R1A appears to have reconnected the stream to its historic floodplain, as well as raise the groundwater table in the buffer areas adjacent to the reach. These observations are evidenced by the increase of wetland vegetation species and the saturation of the soils in the buffer areas adjacent to Reach R1A. The waste treatment outfall located on R1 reach and emanating from the nearby school appears to be functioning extremely well. Vegetation around the outfall is growing rapidly and helping to create a highly stable secondary treatment area.

Based on the results of the stream monitoring for Monitoring Year 2 at LWOC, as well as the subsequent corrective actions being taken, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

NCEEP expressed concerns regarding the fencing of the conservation easement at LWOC to Mulkey in a letter dated May 26, 2009. Mulkey responded to NCEEP in a June 1, 2009 letter, urging NCEEP to consider several key exceptions for this particular case. These exceptions are explained in the referenced June 1, 2009 letter. Mulkey awaits response from NCEEP regarding the July 2009 letter before further addressing the concerns raised by NCEEP.

3.2.5 Stream Monitoring Results for Year 3 of 5

In early November 2010, the stream monitoring for Monitoring Year 3 was conducted using the methodologies described above. Despite the site suffering a flood event from the remnants of a tropical storm, the overall stability of the six stream reaches has improved. The stream dimension, pattern, and profile remained consistent with the previous years' data and continue to remain within the tolerances of the design parameters which is explained in detail below. However the visual assessment did reveal areas of scour along the banks, benches, and terraces confined mostly to reach R1. Mulkey intends to repair these areas in early 2011 to ensure ample time for the project to recover. Nonetheless, per the monitoring guidance, the overall stability of LWOC is within acceptable tolerances.

LWOC experienced several storm events over the Year 3 monitoring period, the most extensive occurring from the remnants of a tropical storm occurring in late September of 2010. This event created storm flows well in excess of the bankfull stage evidenced by wrack lines along the terrace slopes. These lines were often above the measurable extent of the crest gages. In fact, the flows destroyed four of the eight crest gages across the site. The four destroyed crest gages existed on reaches which have achieved the two bankfull events in two separate years' hydrological monitoring success criteria. Overall, five of the six reaches on LWOC have achieved the hydrological success criteria for monitoring; therefore Mulkey intends to only continue monitoring R2D.

The visual assessment of LWOC supported the crest gage data with several areas of scour occurring along reach R1, vegetative matts being forced down, wrack lines along the terrace slopes, silt dispersed on the vegetation on the bench, deposition of sand/silt on the benches, and minor washing out of the fence. Most of this evidence can be viewed through the photo logs of the vegetation plots (Appendix B), photo points (Appendix C), and cross sections (Appendix D); however photos of the scour along R1 can be found in Appendix F as no existing photo points could capture the areas of concern. The scour occurred because back eddies were formed from the terrace slopes following the creek. In these areas the back eddies essentially drilled a hole in the bench and deposited the materials downstream. Areas of bank scour were located in the vicinity of these scour holes as heavy flows began reentering the channel. There are also areas of scour around the structure tie-ins with the bench where unforeseen eddies began to develop downstream of structure arms. Due to the location of this disturbance occurring up on the bench or terraces, the monitoring does not
reflect any instability from these areas of concern. Nonetheless, Mulkey perceived these areas of concern as detracting from the overall positive trends developing across LWOC and therefore intends to repair these areas in early 2011 . The repairs will consist of a combination of grading and vegetative activities to minimize the effects of future excessive flows.

Contrary to the visual assessment, the comparison of the 13 cross sections to previous monitoring data indicated stability across the site (Appendix E). The cross sections along R2 (1-5) not only show signs of a stable channel, but they depict the expected tightening of the channel due to vegetation taking hold with aggradation along the banks occurring in all but 1 cross section. The cross section on R2A (6) also depicts this phenomenon while the cross sections for R1A (13), R2B (7) and R2D (8) show no significant change in shape or form. The cross sections along R1 (9-12) show slight variation in shape and form that is indicative of a recent excessive storm event. However, upon comparison of all cross sections with past monitoring data and design tolerances, every measured variable is either varying within the design tolerance or migrating back towards an acceptable value. Therefore in terms of channel dimension, LWOC has been determined to be stable and meeting all monitoring success criteria.

Similarly, the stream pattern for all reaches across LWOC portrayed a stable stream network. The meander length, belt width, and radius of curvature measurements for each reach remained within the design tolerances and showed no significant deviations from the previously collected monitoring data.

The longitudinal profiles, found in Appendix E, depicted slight variations in each stream reach. Reaches R1 and R2B were consistent with previously collected data while R2 and R2A displayed degradation and R1A and R2D aggradation. These differences can be attributed to the dynamic nature of the stream system coupled with the system experiencing an intense storm event. Typically, the bed materials would correlate and support stream bed fluctuation with aggrading streams displaying an influx of finer materials and vice versa for degrading streams. This correlation is displayed in R1A and R2D where the finer sediments upstream are being slowed by the vegetation and aggrading the channel. Similarly, R2 is displaying the correlation in reverse with the bed material coarsening while the bed degrades exposing the larger substrate materials. R1 has a consistent longitudinal profile and is beginning to coarsen indicating the reach still moving towards an equilibrium between stream power and sediment transport. R2A with degradation in the longitudinal profile and fining of the bed materials is still trying to accommodate the sediment supply exposed upstream during the construction process. R2B displayed consistent bed slope and bed form thus indicating a balance reached between stream power and sediment transport. Therefore all of the reaches except R2B are still showing the expected signs of stream fluctuation indicative of a system trying to establish equilibrium. None of the described trends are representative of trends toward instability, rather they depict the natural development of a young stream network striking a balance between stream power and sediment transport.

As detailed by the monitoring guidance, data was collected and analyzed for the Bank Erosion Hazard Index (BEHI) and Near Bank Shear Stress (NBS) in an effort to quantify the
sediment transport rate in tons/year for each reach in LWOC (See Table IX). The results of this process indicated a significant decrease across LWOC. Pre-construction data determined the sediment transport rate to be 1853 tons/year. Data collected in Monitoring Year 3 revealed a sediment transport rate of 342 tons/year or an 82% reduction in sediment in the system. Reach R1, the reach most affected by the storm event, showed a reduction in sediment transport from 455 tons/year to 189 tons/year or a 58% reduction. These individual reach trends and cumulative system wide trends show extremely positive results and are indicative of stream stability across the entire stream network at LWOC.

In Spring of 2010, Mulkey relocated portions of the fence surrounding the easement around LWOC. This was performed at the request of NCEEP to ensure the entire easement was protected from cattle and to include the required 50 foot buffer established by the United States Army Corps of Engineers. The new fence locations have been incorporated and accurately depicted on the plan sheets found in Appendix B.

In conclusion, Mulkey has determined that all monitoring aspects have met the monitoring success criteria established for LWOC. Mulkey does intend to perform some minor corrections to LWOC in early 2011 so as not to detract from the overall success of the project. These corrections are minor in scope and do not affect the overall stability of LWOC. Given the overall success and the prior fence relocation, Mulkey does not recommend any action except to proceed with the annual stream monitoring.

4.0 Project Monitoring Methodology

Success criteria for stream mitigation sites are based on guidelines established by the USACE, US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and the NCDWQ (USACE et. al, 2003). These guidelines establish criteria for monitoring both hydrologic conditions and vegetation survival. These same guidelines were used to develop the monitoring methods, frequencies, and success criteria discussed herein for LWOC and further described in detail in the approved mitigation report (Mulkey Engineers and Consultants, 2008). LWOC site conditions will be monitored annually during the latter part of the growing season months (August, September, and October) over the five-year monitoring period. This monitoring period complies with the requirements set forth in the Full Delivery RFP 16-D06027. Monitoring results will be documented on an annual basis, with the associated reports submitted to the NCEEP as evidence that the established project goals and objectives are being achieved. The results of annual monitoring will be used to evaluate the degree of success LWOC has achieved in meeting the said goals and objectives. In the event that goals are not being met, Mulkey will coordinate with the NCEEP to develop a plan for ameliorating the areas of concern.

5.0 References

Mulkey Engineers and Consultants. 2008. Little White Oak Creek Stream Restoration Mitigation Report. August 2008.

NCEEP. 2005. Content, Format, and Data Requirements for EEP Monitoring Reports. Version 1.1, September 16, 2005. NCDENR, NCEEP. 17 pp.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena, 22:169-199.
Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. 1998. The Reference Reach - A Blueprint for Natural Channel Design. From Proceedings of the Wetlands and Restoration Conference, March 1998, Denver CO. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health and Natural Resources.

USACE, USEPA, NCWRC, and NCDWQ. 2003. Stream Mitigation Guidelines. April 2003.

Table I. Project Restoration Approach and Mitigation Type Little White Oak Creek Stream Restoration / D06027-B					
$\begin{gathered} \text { Stream Reach } \\ \text { ID } \end{gathered}$	$\begin{array}{\|c} \text { Restoration } \\ \text { Approach } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Mitigation } \\ \text { Type } \end{array} \\ \hline \end{array}$	Linear Footage	Stationing	Comments
R1	P2	R	7,543	0+00-75+43	Channel relocation with floodplain excavation
R1A	P1/P2	R	1,040	0+00-10+40	Includes 850 feet of P 1 and 190 feet of P2 channel relocation
$\begin{array}{\|l} \hline \text { R2 (Upper } \\ \text { and Lower) } \end{array}$	P2	R	7,107	0+00-71+07	Channel relocation with floodplain excavation
R2A	P2	R	336	0+00-3+36	Channel relocation with floodplain excavation
R2B	P1/P2	R	1,474	0+00-14+74	Includes 250 feet of P1 and 1224 feet of P2 channel relocation
R2D	P1/P2	R	790	0+00-7+90	Includes 100 feet of P1 and 690 feet of P2 channel relocation
$\mathrm{R}=$ Restoration \quad P1 = Priority I					
EI $=$ Enhancement I		P2 = Priority II			
EII $=$ Enhancement II		P3 = Priority III			
$\mathrm{S}=$ Stabilization		SS $=$ Stream Banks Stabilization			

Table II. Project Activity and Reporting History Little White Oak Creek Stream Restoration / D06027-B					
Activity or Report	Dcheduled Completion	Data Collection Completion	Actual Completion or Delivery		
Restoration Plan Prepared	Oct-06	Aug-06	12-Feb-07		
Restoration Plan Approved	Nov-06	N/A	30-Mar-07		
Final Design - 90\%	Dec-06	N/A	16-May-07		
Construction	Jun-07	N/A	13-Nov-07		
Temporary S\&E mix applied to entire project area	Jun-07	N/A	13-Nov-07		
Permanent seed mix applied to entire project area	Jun-07	N/A	13-Nov-07		
Planting live stakes	Dec-07	N/A	11-Jan-08		
Planting bare roots	Dec-07	N/A	11-Jan-08		
End of Construction	Dec-07	N/A	11-Jan-08		
Survey of As-built conditions (Year 0 Monitoring - Baseline)	Jan-08	Jan-08	9-Jan-08		
Monitoring					
Year 1-2008	Dec-08	Sep-08	Dec-08		
Year 2 - 2009	Dec-09	Oct-09	Dec-09		
Year 3-2010	Dec-10	Nov-10	Dec-10		
Year 4-2011	Dec-11	N/A	N/A		
Year 5 - 2012	Dec-12	N/A	N/A		

Bolded items represent those events or deliverables that are variable. Non-bolded items
represent events that are standard components over the course of a typical project.

Table III. Project Contacts Little White Oak Creek Stream Restoration / D06027-B	
Designer Mulkey Engineers and Consultants	6750 Tryon Road Cary, NC 27518 Contact: Emmett Perdue, PE Tel. 919.858.1874
Construction Contractor Vaughan Contracting, LLC	$\text { P.O. Box } 796$ Wadesboro, NC 28170 Contact: Tommy Vaughan Tel. 704.694.6450
Planting Coordinator Bruton Nurseries and Landscapes	150 Black Creek Road Fremont, NC 27830 Contact: Charles Bruton, Jr. Tel. 919.242.6555
Seeding Contractor Vaughan Contracting, LLC	P.O. Box 796 Wadesboro, NC 28170 Contact: Tommy Vaughan Tel. 704.694.6450
Seed Mix Sources Evergreen Seed	P.O. Box 669 Willow Spring, NC 27592 Contact: Wister Heald Tel. 919.567.1333
Nursery Stock Suppliers International Paper South Carolina SuperTree Nursery North Carolina Forestry Service Claridge Nursery	5594 Highway 38 South Blenheim, SC 29516 Contact: Geoffrey Hill Tel. 803.528.3203 762 Claridge Nursery Road Goldsboro, NC 27530 Contact: James West Tel. 919.731.7988
Monitoring Performers Mulkey Engineers and Consultants	6750 Tryon Road Cary, NC 27518 Contact: Emmett Perdue Tel. 919.858.1874

Table IV. Project Background Little White Oak Creek Stream Restoration / D06027-B	
Project County	Polk County, North Carolina
Drainage Area [sq. mi(acres)]	
R1	4.46 (2854)
R1A	0.11 (70)
R2	10.85 (6944)
R2A	0.54 (355)
R2B	0.12 (77)
R2D	0.05 (32)
Drainage Impervious cover estimate (\%)	
R1	2
R1A	2
R2	2
R2A	2
R2B	2
R2D	2
Stream Order	
R1	3
R1A	,
R2	3,4
R2A	2
R2B	1
R2D	1
Physiographic Region	Piedmont
Ecoregion	Southern Inner Piedmont
Rosgen Classification (As-built)	
R1, R1A, R2	C5
R2A, R2B	C4
R2D	C6
Cowardin Classification	R3UB2*
Dominat Soil Types	Riverview-Chewacla-Buncombe
Reference Site ID	UT to Ostin Creek
USGS HUC for Project and Reference	
Project	03050105
Reference	03050105
NCDWQ Sub-basin for Project and Reference	
Project	03-08-02 (Broad)
Reference	03-08-03 (Borad)
NCDWQ Classification for Project and Reference	
Project	C
Reference	C, Tr
Any portion of any project segement 303d?	No
Any portion of any project segement upstream of a 303d listed segment?	No
Reasons for 303d listing or stressor	N/A
Percent of project easement fenced	100

(R) Riverine (3) Upper Perennial (UB) Unconsolidated Bottom (2) Sand
Table V. Stem Counts Monitoring Year 3 for Each Species Arranged by Plot

Table V. Stem Counts Monitoring Year 3 for Each Species Arranged by Plot Little White Oak Creek Stream Restoration / D06027-B																														
	Plots																								Year 0	Year 0 Totals (Adjusted) ${ }^{\text {A }}$	Year 1 Totals	Year 2 Totals	Year 3 Totals	$\begin{array}{\|c\|} \text { Survival } \\ \% \end{array}$
Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24						
Shrubs																														
Cephalanthus occidentalis																3			1						9	9	8	7	4	44\%
Cornus amomum		1					4	2		1		1		3											15	18	18	18	12	67\%
Sambucus canadensis																									2	2	2	0	0	0\%
Trees																														
Betula nigra	1	8				2	5	5		1				2				1		2			6		41	40	37	35	33	83\%
Cornus florida															1						1				2	2	2	2	2	100\%
Corylus americana														1											17	5	4	3	1	20\%
Diospyros virginiana											3	2					2							7	19	19	16	17	14	74\%
Fraxinus pennsylvanica								2		2			7	1				4	2			5	1		37	35	35	31	24	69\%
Juglans nigra			2								1										1			2	7	7	6	6	6	86\%
Pinus echinata			2	1	1				1			1					2								28	26	15	11	8	31\%
Pinus strobus									2		1				4									1	20	21	18	11	8	38\%
Pinus virginiana					3				2						2										12	13	9	8	7	54\%
Prunus serotina			1		2						1	1			1						1				6	7	7	7	7	100\%
Plantanus occidentalis							2	2		5		7				4		2	5	16			1		45	45	45	45	44	98\%
Quercus alba			5	7	3				3		1	1		1	1		7		1		1			7	35	43	39	41	38	88\%
Quercus falcata									3	1	5				6		2				7				41	36	30	28	24	67\%
Quercus michauxii	7	2								1			4	2		2		1		4		4	3		47	46	45	40	30	65\%
Quercus nigra	8					9																			34	23	21	21	17	74\%
Quercus phellos	2	2			2	4																			9	19	19	19	10	53\%
Salix nigra																									1	1	1	1	0	0\%
Ulmus americana								4		4				1		4		3	9			9	4		26	43	42	41	38	88\%
Totals	18	13	10	8	11	15	11	15	11	15	12	13	11	11	15	13	13	11	18	22	11	18	15	17	453	460	419	392	327	71\%
										Stems	Acre														Min	Ave	Max			
Year 0	996	823	735	653	741	950	748	763	683	694	656	705	795	615	850	868	757	518	854	1000	645	924	776	939	518	779	1000			
Year 1	996	823	571	571	576	826	709	763	562	694	615	581	795	615	729	826	598	438	813	1000	484	924	776	816	438	713	1000			
Year 2	996	823	490	367	535	744	669	643	522	694	615	581	711	615	729	702	558	438	772	1000	444	843	776	776	367	668	1000			
Year 3	747	563	408	327	453	620	433	602	442	612	492	539	460	451	607	537	518	438	732	917	444	723	612	694	327	557	917			
Plot Acreage	0.024	0.023	0.025	0.025	0.024	0.024	0.025	0.025	0.025	0.025	0.024	0.024	0.024	0.024	0.025	0.024	0.025	0.025	0.025	0.024	0.025	0.025	0.025	0.025						

Table VI. Vegetative Problem Areas			
Little White Oak Creek Stream Restoration / D06027-B			
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
No vegetative problem areas observed (Year 1, 2008)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 2, 2009)	All project reaches	N/A	N/A
No vegetative problem areas observed (Year 3, 2010)	All project reaches	N/A	N/A

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R1A (1040 ft)																		
PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft) Floodprone Width (ft) BKF Cross Sectional Area (sq. ft.)	--	--	--	6	21	12	4.5	10.9	7.7	16.0	20.6	18.5	--	--	8.0	--	--	7.8
	--	--	--	--	--	--	8.6	19.1	13.8	67.2	72.8	67.2	28.2	35.2	30.5	--	--	125.0
	--	--	--	9	37	19	1.6	5.9	3.7	27.4	33.4	30.3	--	--	5.0	--	--	3.5
BKF Mean Depth (ft)	--	--	--	0.9	2.1	1.6	0.36	0.54	0.45	1.57	1.72	1.64	--	--	0.63	--	--	0.45
BKF Max Depth (ft) Width/Depth Ratio	--	--	--	--	--	--	0.54	1.18	0.86	1.54	2.36	1.90	0.59	0.90	0.73	--	--	0.79
	--	--	--	--	--	--	12.5	20.2	16.4	9.3	12.7	11.3	--	--	12.7	--	--	17.2
Entrenchment Ratio	--	--	--	--	--	--	1.7	1.9	1.8	3.5	4.4	3.8	3.5	4.4	3.8	--	--	16.1
Wetted Perimeter (ft) Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	4.7	--	--	20.8	--	--	9.3	--	--	8.1
	--	--	--	--	--	--	--	--	0.3	--	--	1.4	--	--	0.5	--	--	0.4
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	--	--	--	36.0	150.0	67.0	23.8	64.5	28.8	16.4	39.7	24.4
	--	--	--	--	--	--	--	--	--	19.0	115.0	49.0	12.0	49.5	21.1	10.0	21.0	14.7
	--	--	--	--	--	--	--	--	--	33.0	155.0	94.0	14.2	66.7	40.4	61.5	85.7	68.8
	--	--	--	--	--	--	--	--	--	1.9	8.1	3.6	1.9	8.1	3.6	2.1	5.1	3.1
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
$\begin{array}{r} \text { Riffle Length }(\mathrm{ft}) \\ \text { Riffle Slope }(\mathrm{ft} \mathrm{ft}) \\ \text { Pool Length }(\mathrm{ft}) \\ \text { Pool Spacing (ft) } \end{array}$	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	8.0	26.0	14.5
	--	--	--	--	--	--	--	--	--	0.006	0.066	0.028	0.007	0.070	0.030	0.004	0.046	0.019
	--	--	--	--	--	--	--	--	--	18.3	62.9	35.1	7.9	27.1	15.1	7.5	30.7	18.5
	--	--	--	--	--	--	--	--	--	50.3	105.8	78.9	21.6	45.5	33.9	15.0	52.3	32.0
Substrate																		
$\begin{gathered} \mathrm{d} 50(\mathrm{~mm}) \\ \mathrm{d} 84(\mathrm{~mm}) \end{gathered}$	--			--			0			3			0			0.28		
	--			--			6			105			6			1		
Additional Reach Parameters																		
Bankfull Slope (ft/ft) Channel Length(ft) Valley Length (ft)	--			--			0.0122			0.0090			0.0096			0.0115		
	--			--			906			590			1225			1040		
	--			--			854			404			854			854		
Sinuosity	--			--			1.06			1.46			1.43			1.22		
Rosgen Classification	--			--			Degraded B6c			C4/1			C5			C5		

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2 (7107 ft)																		
PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft) Floodprone Width (ft) BKF Cross Sectional Area (sq. ft.)	--	--	--	18	50	29	24.3	24.5	24.4	16.0	20.6	18.5	--	--	31.1	26.7	33.1	30.2
	--	--	--	--	--	--	77.1	251.0	164.0	67.2	72.8	67.2	109.8	137.4	119.0	92.0	120.0	108.1
	--	--	--	40	150	85	76.1	76.7	76.4	27.4	33.4	30.3	--	--	76.0	61.9	73.5	66.0
BKF Mean Depth (ft) BKF Max Depth (ft) Width/Depth Ratio	--	--	--	1.8	4	2.9	3.13	3.14	3.14	1.57	1.72	1.64	--	--	2.45	1.89	2.38	2.20
	--	--	--	--	--	--	3.61	4.94	4.10	1.54	2.36	1.90	2.30	3.52	2.83	2.95	4.40	3.68
	--	--	--	--	--	--	7.7	7.8	7.8	9.3	12.7	11.3	--	--	12.7	11.5	17.5	14.0
Entrenchment Ratio	--	--	--	--	--	--	3.1	10.3	6.7	3.5	4.4	3.8	3.5	4.4	3.8	2.8	4.5	3.6
Wetted Perimeter (ft) Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	28.0	--	--	20.8	--	--	35.9	28.0	34.0	31.5
	--	--	--	--	--	--	--	--	2.7	--	--	1.4	--	--	2.1	1.8	2.3	2.1
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	15.2	48.7	32.8	36.0	150.0	67.0	60.4	251.6	112.4	40.6	169.2	105.1
	--	--	--	--	--	--	19.7	124.4	45.8	19.0	115.0	49.0	31.9	192.9	82.2	38.1	155.1	61.8
	--	--	--	--	--	--	85.8	165.1	118.2	33.0	155.0	94.0	55.4	260.0	157.7	179.3	296.1	248.4
	--	--	--	--	--	--	3.5	6.8	4.9	1.9	8.1	3.6	1.9	8.1	3.6	1.3	5.6	3.5
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	23.6	66.1	44.2
	--	--	--	--	--	--	0.001	0.008	0.003	0.006	0.066	0.028	0.001	0.014	0.006	0.001	0.002	0.001
	--	--	--	--	--	--	8.5	137.1	42.0	18.3	62.9	35.1	30.8	105.5	58.9	18.9	84.9	52.3
	--	--	--	--	--	--	38.7	442.4	205.7	50.3	105.8	78.9	84.4	177.5	132.3	132.2	264.4	183.0
Substrate																		
$\begin{aligned} & \mathrm{d} 50(\mathrm{~mm}) \\ & \mathrm{d} 84(\mathrm{~mm}) \end{aligned}$	--			--			0.8			3			0.8			0.6		
	--			--			5.4			105			5.4			4.7		
Additional Reach Parameters																		
Bankfull Slope (ft/ft) Channel Length(ft)	--			--			0.0021			0.0090			0.0019			0.0017		
		--			--		5978			590			7337			7107		
Valley Length (ft)		--			--		5255			404			5255			5255		
Sinuosity	--				--		1.14			1.46			1.40			1.35		
Rosgen Classification	--			--			Degraded E5			C4/1			C5			C5		

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2A ($\mathbf{3 3 6} \mathrm{ft}$)																		
PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft) Floodprone Width (ft)	--	--	--	5.5	20	11	11.2	11.2	11.2	16.0	20.6	18.5	--	--	11.7	--	--	13.9
	--	--	--	--	--	--	16.0	19.1	17.5	67.2	72.8	67.2	42.4	51.9	44.9	--	--	40.5
	--	--	--	6.5	28	16	10.8	16.8	13.8	27.4	33.4	30.3	--	--	11.0	--	--	15.8
BKF Mean Depth (ft)	--	--	--	0.65	1.9	1.3	0.97	1.50	1.24	1.57	1.72	1.64	--	--	0.94	--	--	1.14
	--	--	--	--	--	--	0.95	2.23	1.48	1.54	2.36	1.90	0.88	1.35	1.09	--	--	1.80
BKF Max Depth (ft) Width/Depth Ratio	--	--	--	--	--	--	7.5	11.5	9.5	9.3	12.7	11.3	--	--	12.5	--	--	12.2
Entrenchment Ratio	--	--	--	--	--	--	1.4	1.7	1.6	3.5	4.4	3.8	3.5	4.4	3.7	--	--	2.9
Wetted Perimeter (ft) Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	13.2	--	--	20.8	--	--	13.6	--	--	14.7
	--	--	--	--	--	--	--	--	1.3	--	--	1.4	--	--	0.8	--	--	1.1
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	20.2	20.2	20.2	36.0	150.0	67.0	22.8	95.0	42.4	32.2	49.3	40.0
	--	--	--	--	--	--	8.8	31.4	21.1	19.0	115.0	49.0	12.0	72.8	31.0	17.6	27.2	22.9
	--	--	--	--	--	--	76.7	76.7	76.7	33.0	155.0	94.0	20.9	98.1	59.5	99.4	107.1	102.9
	--	--	--	--	--	--	1.8	1.8	1.8	1.9	8.1	3.6	1.9	8.1	3.6	2.3	3.6	2.9
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5.8	46.8	23.1
	--	--	--	--	--	--	0.004	0.024	0.011	0.006	0.066	0.028	0.006	0.066	0.029	0.011	0.131	0.046
	--	--	--	--	--	--	17.2	65.4	31.8	18.3	62.9	35.1	11.6	39.8	22.2	16.6	42.1	29.5
	--	--	--	--	--	--	83.1	165.7	113.2	50.3	105.8	78.9	31.8	67.0	49.9	61.7	72.9	65.7
Substrate																		
$\begin{aligned} & \mathrm{d} 50(\mathrm{~mm}) \\ & \mathrm{d} 84(\mathrm{~mm}) \end{aligned}$	--			--			20			3			20			0.5		
	--			--			50			105			50			27.5		
Additional Reach Parameters																		
Bankfull Slope (ft/ft) Channel Length(ft)	--			--			0.0107			0.0090			0.0091			0.0150		
		--			--		377			590			379			336		
Valley Length (ft)		--			--		319			404			246			246		
Sinuosity	--				--		1.18			1.46			1.54			1.36		
Rosgen Classification	--			--			Degraded E4			C4/1			C4			C5		

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2B (1474 ft)																		
PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft) Floodprone Width (ft) BKF Cross Sectional Area (sq. ft.)	--	--	--	3	11	6	4.5	6.4	5.5	16.0	20.6	18.5	--	--	8.0	8.8	8.9	8.8
	--	--	--	--	--	--	5.4	195.3	100.4	67.2	72.8	67.2	28.2	35.2	30.5	26.0	75.0	49.1
	--	--	--	2	9	4.5	5.9	8.7	7.3	27.4	33.4	30.3	--	--	5.0	4.9	8.7	6.3
BKF Mean Depth (ft) BKF Max Depth (ft)	--	--	--	0.45	1.2	0.8	1.31	1.35	1.33	1.57	1.72	1.64	--	--	0.63	0.56	0.98	0.72
	--	--	--	--	--	--	1.70	1.80	1.75	1.54	2.36	1.90	0.59	0.90	0.73	0.93	1.48	1.13
Width/Depth Ratio	--	--	--	--	--	--	3.4	4.8	4.1	9.3	12.7	11.3	--	--	12.7	9.0	15.7	13.0
	--	--	--	--	--	--	1.2	30.3	15.8	3.5	4.4	3.8	3.5	4.4	3.8	3.0	8.5	5.6
Wetted Perimeter (ft) Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	6.4	--	--	20.8	--	--	9.3	9.1	9.7	9.3
	--	--	--	--	--	--	--	--	0.9	--	--	1.4	--	--	0.5	0.5	0.9	0.7
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	--	--	--	36.0	150.0	67.0	15.5	64.5	28.8	8.0	37.1	22.6
	--	--	--	--	--	--	--	--	--	19.0	115.0	49.0	8.2	49.5	21.1	7.9	31.0	15.3
	--	--	--	--	--	--	--	--	--	33.0	155.0	94.0	14.2	66.7	40.4	56.1	70.8	63.6
	--	--	--	--	--	--	--	--	--	1.9	8.1	3.6	1.9	8.1	3.6	0.9	4.2	2.6
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5.7	17.0	10.1
	--	--	--	--	--	--	--	--	--	0.006	0.066	0.028	0.008	0.083	0.036	--	--	--
	--	--	--	--	--	--	--	--	--	18.3	62.9	35.1	7.9	27.1	15.1	10.5	31.5	16.6
	--	--	--	--	--	--	--	--	--	50.3	105.8	78.9	21.6	45.5	33.9	15.5	105.3	35.6
Substrate																		
$\mathrm{d} 50(\mathrm{~mm})$$\mathrm{d} 84(\mathrm{~mm})$	--			--			4.9			3			4.9			0.1		
	--			--			28			105			28			6.2		
Additional Reach Parameters																		
Bankfull Slope (ft/ft) Channel Length(ft)	--			--			0.0145			0.0090			0.0113			0.0139		
	--			--			1385			590			1654			1474		
	--			--			1264			404			1091			1091		
Sinuosity	--			--			1.10			1.46			1.52			1.35		
Rosgen Classification	--			--			G5c			C4/1			C4			C5		

Table VII. cont. Baseline Morphology and Hydraulic Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2D (790 ft)																		
PARAMETERS	USGS Gage Data			Regional Curve Interval			Pre-Existing Condition			Project Reference Stream			Design			As-built		
Dimension - Riffle	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
BKF Width (ft) Floodprone Width (ft)	--	--	--	--	--	3.3	3.8	7.2	5.5	16.0	20.6	18.5	--	--	8.0	--	--	8.8
	--	--	--	--	--	--	8.4	12.6	10.5	67.2	72.8	67.2	28.2	35.2	30.5	--	--	70.0
	--	--	--	--	--	2.7	2.7	5.8	4.3	27.4	33.4	30.3	--	--	5.0	--	--	6.0
BKF Mean Depth (ft) BKF Max Depth (ft)	--	--	--	--	--	0.6	0.70	0.80	0.75	1.57	1.72	1.64	--	--	0.63	--	--	0.68
	--	--	--	--	--	--	1.12	1.65	1.40	1.54	2.36	1.90	0.59	0.90	0.73	--	--	1.02
Width/Depth Ratio	--	--	--	--	--	--	5.3	8.8	7.1	9.3	12.7	11.3	--	--	12.7	--	--	13.0
Entrenchment Ratio	--	--	--	--	--	--	1.8	2.2	2.0	3.5	4.4	3.8	3.5	4.4	3.8	--	--	7.9
Wetted Perimeter (ft) Hydraulic Radius (ft)	--	--	--	--	--	--	--	--	--	--	--	20.8	--	--	9.3	--	--	9.3
	--	--	--	--	--	--	--	--	--	--	--	1.4	--	--	0.5	--	--	0.7
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Channel Beltwidth (ft) Radius of Curvature (ft) Meander Wavelength (ft) Meander Width Ratio	--	--	--	--	--	--	--	--	--	36.0	150.0	67.0	15.5	64.5	28.8	8.6	42.0	24.8
	--	--	--	--	--	--	--	--	--	19.0	115.0	49.0	8.2	49.5	21.1	8.2	20.1	13.3
	--	--	--	--	--	--	--	--	--	33.0	155.0	94.0	14.2	66.7	40.4	47.7	68.6	61.8
	--	--	--	--	--	--	--	--	--	1.9	8.1	3.6	1.9	8.1	3.6	1.0	4.8	2.8
Profile	Min	Max	Med	LL	UL	Eq	Min	Max	Med									
Riffle Length (ft) Riffle Slope (ft/ft) Pool Length (ft) Pool Spacing (ft)	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6.2	26.4	13.4
	--	--	--	--	--	--	--	--	--	0.006	0.066	0.028	0.008	0.083	0.036	0.008	0.062	0.028
	--	--	--	--	--	--	--	--	--	18.3	62.9	35.1	7.9	27.1	15.1	10.1	23.3	15.9
	--	--	--	--	--	--	--	--	--	50.3	105.8	78.9	21.6	45.5	33.9	31.8	90.7	51.9
Substrate																		
$\begin{aligned} & \mathrm{d} 50(\mathrm{~mm}) \\ & \mathrm{d} 84(\mathrm{~mm}) \end{aligned}$	--			--			0.06			3			0.06			0.32		
	--			--			0.21			105			0.21			0.5		
Additional Reach Parameters																		
Bankfull Slope (ft/ft) Channel Length(ft)	--			--			0.0111			0.0090			0.0079			0.0105		
		--			--		549			590			860			790		
	--			--			486			404			571			571		
$\begin{array}{r} \text { Valley Length (ft) } \\ \text { Sinuosity } \\ \text { Rosgen Classification } \end{array}$	--			--			1.13			1.46			1.51			1.38		
	--			--			Degraded E6			C4/1			C6			C5		

Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R1A (1040 ft)																														
PARAMETERS	Cross Section 13Riffle					MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
Dimension	MY1	MY2	MY3	MY4	MY5																									
BKF Width (ft)	7.8	9.2	7.6																											
Floodprone Width (ft)	124.2	125.0	125.0																											
BKF Cross Sectional Area (sq. ft.)	4.2	4.4	3.5																											
BKF Mean Depth (ft)	0.54	0.48	0.46																											
BKF Max Depth (ft)	0.82	0.77	0.85																											
Width/Depth Ratio	14.5	19.2	16.4																											
Entrenchment Ratio	15.85	13.54	16.56																											
Wetted Perimeter (ft)	8.1	9.8	7.8																											
Hydraulic Radius (ft)	0.52	0.45	0.45																											

Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2A ($\mathbf{3 3 6} \mathrm{ft}$)																														
PARAMETERS	$\begin{gathered} \text { Cross Section } 6 \\ \text { Riffle } \end{gathered}$					MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY				
Dimension	MY1	MY2	MY3	MY4	MY5																						MY2	MY3	MY4	MY5
BKF Width (ft)	16.1	16.1	13.4																											
Floodprone Width (ft)	40.4	40.6	41.6																											
BKF Cross Sectional Area (sq. ft.)	16.2	15.1	9.4																											
BKF Mean Depth (ft)	1.01	0.94	0.70																											
BKF Max Depth (ft)	1.89	1.90	2.09																											
Width/Depth Ratio	15.9	17.1	19.2																											
Entrenchment Ratio	2.51	2.52	3.10																											
Wetted Perimeter (ft)	16.7	16.9	15.1																											
Hydraulic Radius (ft)	0.97	0.90	0.62																											

Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2B (1474 ft)																														
PARAMETERS	$\begin{gathered} \hline \text { Cross Section } 7 \\ \text { Riffle } \\ \hline \end{gathered}$					MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY	MY2	MY3	MY4	MY5
Dimension	MY1	MY2	MY3	MY4	MY5																									
BKF Width (ft)	8.7	8.3	8.5																											
Floodprone Width (ft)	25.5	24.9	25.1																											
BKF Cross Sectional Area (sq. ft.)	4.5	4.2	4.4																											
BKF Mean Depth (ft)	0.52	0.51	0.51																											
BKF Max Depth (ft)	0.89	0.85	0.84																											
Width/Depth Ratio	16.7	16.2	16.6																											
Entrenchment Ratio	2.93	3.01	2.96																											
Wetted Perimeter (ft)	9.0	8.5	8.9																											
Hydraulic Radius (ft)	0.50	0.50	0.49																											

Table VIII. Morphology and Hydraulic Monitoring Summary Little White Oak Creek Stream Restoration / D06027-B Reach R2D (790 ft)																														
PARAMETERS	$\begin{gathered} \text { Cross Section } 8 \\ \text { Riffle } \\ \hline \end{gathered}$					MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY				
Dimension	MY1	MY2	MY3	MY4	MY5																						MY2	MY3	MY4	MY5
BKF Width (ft)	11.7	10.9	11.1																											
Floodprone Width (ft)	69.6	70.0	70.0																											
BKF Cross Sectional Area (sq. ft.)	6.7	7.1	6.5																											
BKF Mean Depth (ft)	0.57	0.65	0.59																											
BKF Max Depth (ft)	1.04	1.05	1.03																											
Width/Depth Ratio	20.6	16.8	18.8																											
Entrenchment Ratio	5.94	6.40	6.31																											
Wetted Perimeter (ft)	12.1	11.3	1.5																											
Hydraulic Radius (ft)	0.55	0.63	0.57																											

Exhibit Table IX. BEHI and Sediment Export Estimates Little White Oak Creek Stream Restoration / D06027-B															
Time Point	Segment / Reach	Linear Footage or Acreage	Extreme		Very High		High		Moderate		Low		Very Low		Sediment Export tons/yr
			ft	\%											
Preconstruction 2006	R1	6530			5877	90									455
	R1A	906	906	100											229
	R2	5979	5381	90											767
	R2A	625			625	100									32
	R2B	1713					1713	100							120
	R2D	526	526	100											250
	TOTAL	16279	6813	42	6502	40	1713	11	0	0	0	0	0	0	1853
$\begin{gathered} \text { Monitoring Y3 } \\ 2010 \end{gathered}$	R1	7543							5280	70	2263	30			189
	R1A	1040									1040	100			1
	R2	7107							7107	100					123
	R2A	336									336	100			3
	R2B	1474									1474	100			4
	R2D	790									790	100			22
	TOTAL	18290	0	0	0	0	0	0	12387	68	5903	32	0	0	342
Monitoring Y5 2012 (NOT APPLICABLE)	R1	7543													
	R1A	1040													
	R2	7107													
	R2A	336													
	R2B	1474													
	R2D	790													
	TOTAL	18290	0	0	0	0	0	0	0	0	0	0	0	0	0

Exhibit Table X. Verification of Bankfull Events Little White Oak Creek Stream Restoration / D06027-B			
Date of Data Collection	Date of Occurrence	Method	Photo No. (If Available)
$8 / 25 / 08-8 / 27 / 08$	Unknown	Crest Guage	N/A
$10 / 13 / 09-10 / 14 / 09$	Unknown	Crest Guage	N/A
$11 / 01 / 10-11 / 03 / 10$	Unknown	Crest Guage	N/A

Table XI. Categorical Stream Feature Visual Stability Assessment Little White Oak Creek Stream Restoration / D06027-B						
Reach R1 (7543ft)						
Feature	Initial	MY-01	MY-02 ${ }^{\text {a }}$	MY-03 ${ }^{\text {B }}$	MY-04	MY-05
Riffles	100\%	100\%	100\%	91\%		
Pools	100\%	100\%	100\%	84\%		
Thalwegs	100\%	100\%	100\%	100\%		
Meanders	100\%	100\%	95\%	95\%		
Bed General	100\%	100\%	100\%	100\%		
Structures	100\%	100\%	95\%	88\%		
Rootwads	100\%	100\%	95\%	98\%		
Reach R1A (1040ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%		
Pools	100\%	100\%	100\%	100\%		
Thalwegs	100\%	100\%	100\%	100\%		
Meanders	100\%	100\%	100\%	100\%		
Bed General	100\%	100\%	100\%	100\%		
Structures	100\%	100\%	100\%	100\%		
Rootwads	100\%	100\%	100\%	100\%		
Reach R2 (7107ft)						
Feature	Initial	MY-01	MY-02 ${ }^{\text {a }}$	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%		
Pools	100\%	100\%	100\%	100\%		
Thalwegs	100\%	100\%	100\%	100\%		
Meanders	100\%	100\%	95\%	95\%		
Bed General	100\%	100\%	100\%	100\%		
Structures	100\%	100\%	95\%	95\%		
Rootwads	100\%	100\%	95\%	95\%		
Reach R2A (336ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%		
Pools	100\%	100\%	100\%	100\%		
Thalwegs	100\%	100\%	100\%	100\%		
Meanders	100\%	100\%	100\%	100\%		
Bed General	100\%	100\%	100\%	100\%		
Structures	100\%	100\%	100\%	100\%		
Rootwads	100\%	100\%	100\%	100\%		
Reach R2B (1474ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%		
Pools	100\%	100\%	100\%	100\%		
Thalwegs	100\%	100\%	100\%	100\%		
Meanders	100\%	100\%	100\%	100\%		
Bed General	100\%	100\%	100\%	100\%		
Structures	100\%	100\%	100\%	100\%		
Rootwads	100\%	100\%	100\%	100\%		
Reach R2D (790ft)						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100\%	100\%	100\%	100\%		
Pools	100\%	100\%	100\%	100\%		
Thalwegs	100\%	100\%	100\%	100\%		
Meanders	100\%	100\%	100\%	100\%		
Bed General	100\%	100\%	100\%	100\%		
Structures	100\%	100\%	100\%	100\%		
Rootwads	100\%	100\%	100\%	100\%		

Notes:
${ }^{\text {A }}$ The results shown above as less than 100% percent, reflect the construction of beaver dams on the respective reaches during MY-02 (2009).
${ }^{\mathrm{B}}$ The entire project suffered a flood event during MY-03 (2010) causing damage along R1.

Table XII. Stream Problem Areas (Year 3 of 5) Little White Oak Creek Stream Restoration / D06027-B			
Feature/Issue	Station / Range	Probable Cause	$\begin{gathered} \text { Photo No. } \\ \text { (If Available) } \end{gathered}$
Right bench erosion	Approximate station 2+10-R1-	Flood Event	N/A
Left terrace erosion	Approximate station 3+75-R1-	Flood Event	Appendix F Photo 1
Left bench and terrace erosion	Approximate station 8+75-R1-	Flood Event	Appendix F Photo 2
Right bench and terrace erosion	Approximate station 10+96-R1-	Flood Event	N/A
Left bench and terrace erosion	Approximate station 12+10-R1-	Flood Event	Appendix F Photo 3
Right terrace and streambank erosion	Approximate station 16+75 to 18+00-R1-	Flood Event	Appendix F Photo 4
Left bench and terrace erosion	Approximate station 19+10-R1-	Flood Event	N/A
Left streambank erosion	Approximate station $20+05$ to $20+50-\mathrm{R} 1-$	Flood Event	Appendix F Photo 5
Right bench and terrace erosion	Approximate station 20+25-R1-	Flood Event	N/A
Right bench, terrace, and streambank erosion	Approximate station 23+90-R1-	Flood Event	Appendix F Photo 6
Right streambank erosion	Approximate station $25+10$ to $25+35-\mathrm{R} 1-$	Flood Event	Appendix F Photo 7
Left streambank erosion	Approximate station $26+45$ to 26+55-R1-	Flood Event	N/A
Right streambank erosion	Approximate station $26+75$ to $27+45-\mathrm{R} 1-$	Flood Event	Appendix F Photo 8
Right streambank scour	Single Arm Vane Structure Number 26 Approximate station 28+35-R1-	Flood Event	N/A
Right bench erosion	Approximate station 29+75-R1-	Flood Event	Appendix F Photo 9
Left streambank scour	Single Arm Vane Structure Number 28 Approximate station 30+25-R1-	Flood Event	N/A
Left bench and terrace erosion	Approximate station 31+35-R1-	Flood Event	Appendix F Photo 10
Right streambank erosion	Approximate station 31+15 to 31+75-R1-	Flood Event	N/A
Right streambank erosion	Approximate station 34+00 to 34+50-R1-	Flood Event	N/A
Left bench erosion	Approximate station 34+40-R1-	Flood Event	N/A
Left terrace erosion	Approximate station 36+70-R1-	Flood Event	N/A
Left bench erosion	Approximate station 39+70-R1-	Flood Event	Appendix F Photo 11
Right terrace erosion	Approximate station 41+60 -R1-	Flood Event	N/A
Left bench erosion	Approximate station 42+30-R1-	Flood Event	N/A
Right streambank erosion	Approximate station 43+50 to 44+00 -R1-	Flood Event	N/A
Right bench erosion	Approximate station 44+35-R1-	Flood Event	N/A
Right streambank erosion	Approximate station 46+95 to 47+30-R1-	Flood Event	N/A
Right streambank erosion	Approximate station 58+30 to 58+70-R1-	Flood Event	N/A
Right bench and streambank erosion	Approximate station $61+85$ to $62+75-\mathrm{R} 1-$	Flood Event	Appendix F Photo 12
Right streambank erosion	Approximate station 54+60 to 55+40-R2-	Flood Event	N/A
Left streambank erosion	Approximate station 56+10 to 57+00-R2-	Flood Event	Appendix F Photo 13

SCO ID NO. D06027-B

COUNTY

SITE
Nollbyolsad

SEE SHEET NO. 18 FOR -RIA-PROFILE	
mememesemammex	

Vegetation Plot 1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 3

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 4

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 5

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 6

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 7

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 8

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 9

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

PHOTOGRAPHIC LOG

Vegetation Plot 10

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 11

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 12

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 13

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegeation Plot 14

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 15

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 16

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 17

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 18

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Vegetation Plot 19

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 20

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 21

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 22

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 23

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Vegetation Plot 24

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 1; Looking Downstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking Downstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking Upstream on Reach R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2; Looking upstream on Reach R2A

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Photo Point 2.5Y1; Looking Downstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 2.5Y1; Looking Upstream Along Reach R2

Not Applicable

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Photo Point 3; Looking Downstream Along Reach R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Photo Point 3; Looking Upstream Along Reach R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 3.5Y1; Looking Downstream Along R2\&R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square

Photo Point 3.5Y1; Looking Upstream Along R2

Not Applicable

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Photo Point 3.5Y1; Looking Upstream Along R2B

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 4; Looking Downstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 4; Looking Upstream at Confluence of R1\&R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 5; Looking Downstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 5; Looking Upstream Along R2

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 6; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 6; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 7; Looking Downstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 7; Looking Upstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8; Looking Downstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring

Photo Point 8; Looking Upstream Along R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8; Looking Upstream Along R1A

As-built Survey: January 2008

Year 2 Monitoring: November 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8.5Y1; Looking Downstream Along R1A

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 8.5Y1; Looking Upstream Along R1A

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Photo Point 9; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 9; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 9; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 10; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Photo Point 11; Looking Across Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 11; Looking Downstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Photo Point 11; Looking Upstream Along Reach R1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 1

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

PHOTOGRAPHIC LOG

Permanent Cross Section 2

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 3

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 4

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 5

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010
\square
Year 5 Monitoring:

Permanent Cross Section 6

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 7

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 8

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 9

As-built Survey: January 2008

Year 2 Monitoring: November 2009
\square
Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 10

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 11

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 12

As-built Survey: January 2008

Year 2 Monitoring: November 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

Permanent Cross Section 13

As-built Survey: January 2008

Year 2 Monitoring: October 2009

Year 4 Monitoring:

Year 1 Monitoring: September 2008

Year 3 Monitoring: November 2010

Year 5 Monitoring:

River Name: Little White Oak Creek (Year 3)
Reach Name: R2
Cross Section Name: (Year 3) Cross Section 1 - Riffle (R2)
Survey Date:
11/09/2010

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	877.077938	GS
10	0	876.741741	GS
15	0	876.262877	GS
25	0	874.161063	GS
35	0	873.72517	GS
40	0	873.850267	GS
44	0	873.734995	LB
48.5	0	872.36849	GS
51.5	0	871.827762	GS
52.5	0	871.531669	GS
53	0	871.050844	GS
54	0	870.820353	LEW
55	0	870.699815	GS
56	0	870.949956	GS
57	0	870.536388	GS
58	0	870.244861	GS
60	0	870.330971	GS
62.5	0	870.064136	TW
64	0	870.490847	GS
65	0	871.045931	REW
67	0	872.702281	GS
69	0	873.271399	BKF
72	0	873.232246	GS
76	0	873.452167	GS
78	0	873.742915	GS
82.5	0	873.802471	GS
92	0	874.10567	GS
97.5	0	875.60042	GS
104.5	0	876.528036	GS
110	0	876.95486	GS

Cross Sectional Geometry

Floodprone Elevation (ft)	$\begin{aligned} & \text { Channe1 } \\ & 876.48 \end{aligned}$	$\begin{aligned} & \text { Left } \\ & 876.48 \end{aligned}$	Right 876.48
Bankful1 Elevation (ft)	873.27	873.27	873.27
Floodprone width (ft)	91.33		
Bankful1 width (ft)	23.46	11.73	11.74
Entrenchment Ratio	3.89		
Mean Depth (ft)	1.88	1.53	2.23
Maximum Depth (ft)	3.21	2.81	3.21
Width/Depth Ratio	12.48	7.67	5.26
Bankful1 Area (sq ft)	44.12	17.97	26.15
Wetted Perimeter (ft)	24.97	15.11	15.47
Hydraulic Radius (ft)	1.77	1.19	1.69
Begin BKF Station	45.53	45.53	57.26

Entrainment Formula: Rosgen Modified Shields Curve $\begin{array}{lll}\text { Channe } & \text { Left Side } & { }_{0}^{\text {Right }} \text { Side }\end{array}$
Slope
Shear Stress (1b/sq ft) Movable Particle (mm)

River Name: Little White Oak Creek (Year 3)
Reach Name: R2
Cross Section Name: (Year 3) Cross Section 2 - Pool (R2)
Survey Date: 11/09/2010

Cross Sectional Geometry

	Channe 1	Left	Right
Floodprone Elevation (ft)	876.18	876.18	876.18
Bankfull Elevation (ft)	872.67	872.67	872.67
Floodprone width (ft)	116.67		
Bankful1 width (ft)	23.5	11.75	11.75
Entrenchment Ratio	4.96		
Mean Depth (ft)	1.56	0.45	2.67
Maximum Depth (ft)	3.51	2	3.51
Width/Depth Ratio	15.06	26.11	4.4
Bankfull Area (sq ft)	36.66	5.28	31.38
Wetted Perimeter (ft)	26.32	14.2	16.13
Hydraulic Radius (ft)	1.39	0.37	1.95
Begin BKF Station	52.5	52.5	64.25
End BKF Station	76	64.25	76

Entrainment Formula: Rosgen Modified Shields Curve

Stope
Shear Stress (1b/sq ft) Movable Particle (mm)
$\begin{array}{ll}\text { Channe1 } & \text { Left Side } \\ 0 & { }_{0}^{\text {Right }} \text { Side }\end{array}$

0

River Name: Little White Oak Creek (Year 3)
Reach Name: R2
Cross Section Name: (Year 3) Cross Section 3 - Pool (R2)
Survey Date:
11/09/2010

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	873.969054	GS
10	0	873.666259	GS
20	0	873.696899	GS
24	0	873.658087	GS
32	0	872.506864	GS
38	0	872.248624	GS
48	0	872.277731	GS
53	0	872.117464	GS
55	0	872.127393	LB
56	0	871.387219	GS
58	0	870.754577	GS
60	0	870.335641	GS
60.5	0	869.607094	LEW
62.5	0	868.063405	TW
63	0	868.241002	GS
65	0	868.685863	GS
66	0	868.892668	GS
68	0	869.016849	GS
68	0	869.537405	REW
71	0	871.144944	GS
75	0	871.397353	GS
81	0	872.017843	BKF
86	0	871.398239	GS
96	0	871.509783	GS
114	0	875.59945	GS
120	0	875.771219	GS
126	0	875.900292	GS
138	0	873.576144	GS
148	0	873.224619	GS
157	0	873.365697	GS
164	0	874.397008	GS

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe 1 875.98	Left 875.98	Right 875.98
Bankfull Elevation (ft)	872.02	872.02	872.02
Floodprone width (ft)	164		
Bankful1 width (ft)	25.7	12.85	12.85
Entrenchment Ratio	6.38		
Mean Depth (ft)	1.59	2.43	0.74
Maximum Depth (ft)	3.96	3.96	2.4
Width/Depth Ratio	16.16	5.29	17.36
Bankfull Area (sq ft)	40.82	31.28	9.54
Wetted Perimeter (ft)	28.11	17.23	15.68
Hydraulic Radius (ft)	1.45	1.81	0.61

Begin BKF Station

55.3

```
Entrainment Formula: Rosgen Modified Shields Curve \(\begin{array}{lll}\text { Channe1 } & \text { Left Side } & \text { Right Side } \\ 0 & 0\end{array}\)
Slope Shear Stress (1b/sq ft) Movable Particle (mm)
```


River Name: Little White Oak Creek (Year 3)
Reach Name: R2
Cross Section Name: (Year 3) Cross Section 4 - Riffle (R2)
Survey Date: 11/09/2010

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	875.06	875.06	875.06
Bankful1 Elevation (ft)	871.53	871.53	871.53
Floodprone width (ft)	120	----	-----
Bankful1 width (ft)	26.06	13.12	12.93
Entrenchment Ratio	4.61	----	-----
Mean Depth (ft)	1.99	2.11	1.86
Maximum Depth (ft)	3.53	3.53	3.33
Width/Depth Ratio	13.1	6.22	6.95
Bankful1 Area (sq ft)	51.82	27.72	24.1
Wetted Perimeter (ft)	27.86	17.13	17.38
Hydraulic Radius (ft)	1.86	1.62	1.39
Begin BKF Station	40.9	40.9	54.02
End BKF Station	66.95	54.02	66.95

Entrainment Formula: Rosgen Modified Shields Curve

Channe	Left Side	Right Side
0	0	

Slope
$\begin{array}{lll}0 & 0 & 0\end{array}$
Shear stress (lb/sq ft) Movable Particle (mm)

River Name: Little White Oak Creek (Year 3)
Reach Name: R2
Cross Section Name: (Year 3) Cross Section 5 - Pool (R2)
Survey Date: 11/09/2010

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe1 873.91	Left 873.91	Right 873.91
Bankfull Elevation (ft)	870.69	870.69	870.69
Floodprone width (ft)	105		
Bankful1 width (ft)	27.31	13.65	13.66
Entrenchment Ratio	3.84		
Mean Depth (ft)	1.71	1.64	1.78
Maximum Depth (ft)	3.22	2.87	3.22
Width/Depth Ratio	15.97	8.32	7.67
Bankful1 Area (sq ft)	46.75	22.45	24.3
Wetted Perimeter (ft)	28.8	16.96	17.57
Hydraulic Radius (ft)	1.62	1.32	1.38
Begin BKF Station	49.71	49.71	63.36
End BKF Station	77.02	63.36	77.02

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve
Channe1 Left Side Right Side

Slope
Shear stress (lb/sq ft) Movable Particle (mm)

River Name: Little White Oak Creek (Year 3)

Reach Name: R2A
Cross Section Name: (Year 3) Cross Section 6 - Riffle (R2A)
Survey Date:

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	880.257537	GS
20	0	880.380444	GS
20	0	880.380462	GS
28.5	0	880.097987	GS
38.5	0	876.998672	GS
42	0	876.395067	GS
47	0	876.432554	GS
50	0	875.836549	GB
52	0	875.660304	GS
54	0	874.926806	GS
56	0	873.8182854	GS
56	0	874.19652	GW
57	0	874.597959	GS
58	0	874.601007	GS
58	0	875.316608	GEW
58.5	0	875.625679	GS
59	0	875.911569	GS
60	0	878.452247	GKF
64	0	879.680882	GS
65	0	879.83018	GS
73	0		GS
79	0		

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe1 878	$\begin{aligned} & \text { Left } \\ & 878 \end{aligned}$	Right 878
Bankfull Elevation (ft)	875.91	875.91	875.91
Floodprone width (ft)	41.55		
Bankfull Width (ft)	13.41	6.7	6.7
Entrenchment Ratio	3.1		
Mean Depth (ft)	0.7	0.86	0.54
Maximum Depth (ft)	2.09	2.09	1.31
width/Depth Ratio	19.16	7.79	12.41
Bankfull Area (sq ft)	9.39	5.76	3.62
Wetted Perimeter (ft)	15.05	9.44	8.22
Hydraulic Radius (ft)	0.62	0.61	0.44
Begin BKF Station	51.59	51.59	58.29
End BKF Station	64.99	58.29	64.99

Entrainment Formula: Rosgen Modified Shields Curve

Slope
$\underset{0}{\text { Channe } 1}{ }_{0}^{\text {Left }}$ Side ${ }_{0}^{\text {Right }} \quad$ Side
Shear stress (1b/sq ft) Movable Particle (mm)

River Name: Little White Oak Creek (Year 3)
Reach Name: R2B
Cross Section Name: (Year 3) Cross Section 7 - Riffle (R2B)
Survey Date:

11/09/2010

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	874.740362	GS
10	0	874.803279	GS
19	0	874.61007	GS
25	0	874.597095	GS
33	0	874.560587	GS
36	0	874.491044	GS
40	0	873.454251	GS
42	0	873.293287	GS
44	0	872.96995	GS
47	0	872.731264	GS
49	0	872.596259	GS
50	0	872.344637	GB
51	0	871.815305	GEW
52	0	871.790267	GS
52.5	0	872.008623	GS
54	0	872.47748	GEW
55	0	872.625695	GS
57	0	872.713116	GS
58	0	872.977514	GS
59	0	873.662564	GS
61	0	874.004544	GS
64	0	873.923606	GS
67	0		GS
69	0		

Cross Sectional Geometry

	Channel	Left	Right
Floodprone Elevation (ft)	873.47	873.47	873.47
Bankfull Elevation (ft)	872.63	872.63	872.63
Floodprone width (ft)	25.05		
Bankfull Width (ft)	8.47	3.97	4.5
Entrenchment Ratio	2.96		
Mean Depth (ft)	0.51	0.53	0.5
Maximum Depth (ft)	0.84	0.84	0.81
Width/Depth Ratio	16.61	7.49	
Bankfull Area (sq ft)	4.36	2.1	2.26
Wetted Perimeter (ft)	8.86	5.04	5.44
Hydraulic Radius (ft)	0.49	0.42	0.42
Begin BKF Station	50.53	50.53	54.5
End BKF Station	59	54.5	59

Entrainment Formula: Rosgen Modified Shields Curve

Stope
Shear Stress (1b/sq ft) Movable Particle (mm)
$\begin{array}{ll}\text { Channe1 } & \text { Left Side } \\ 0 & { }_{0}^{\text {Right }} \text { Side }\end{array}$

0

River Name: Little White Oak Creek (Year 3)
Reach Name: R2D
Cross Section Name: (Year 3) Cross Section 8 - Riffle (R2D)
Survey Date:

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	871.542239	GS
5	0	871.444674	GS
10	0	871.273228	GS
16	0	870.972042	GS
22	0	870.70704	GS
28.5	0	870.642531	GS
29	0	870.635602	BKF
30.5	0	870.088088	GS
31	0	869.955404	LEW
31.5	0	869.606895	GS
32.5	0	869.712753	GS
33.5	0	869.770743	GS
35	0	869.783584	TW
36	0	869.87344	GS
36.5	0	869.897699	REW
37	0	870.095923	GS
38	0	870.425439	GS
39	0	870.487743	RB
42	0	870.840767	GS
49	0	870.988172	GS
59	0	870.904198	GS
65	0	870.856729	GS
70	0	870.774037	GS

Cross Sectional Geometry

	Channe 1	Left	Right
Floodprone Elevation (ft)	871.67	871.67	871.67
Bankful1 Elevation (ft)	870.64	870.64	870.64
Floodprone width (ft)	70		
Bankfull Width (ft)	11.1	5.23	5.87
Entrenchment Ratio	6.31		
Mean Depth (ft)	0.59	0.7	0.48
Maximum Depth (ft)	1.03	1.03	0.86
Width/Depth Ratio	18.81	7.47	12.23
Bankfull Area (sq ft)	6.5	3.67	2.83
Wetted Perimeter (ft)	11.46	6.33	6.86
Hydraulic Radius (ft)	0.57	0.58	0.41
Begin BKF Station	29	29	34.23
End BKF Station	40.1	34.23	40.1

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve
Channe1 Left Side Right Side 0 0 0
Slope
Shear stress (lb/sq ft) Movable Particle (mm)

（Ұ）ио！̣セィәઇヨ

River Name: Little White Oak Creek (Year 3)
Reach Name: R1
Cross Section Name: (Year 3) Cross Section 9 - Pool (R1)
Survey Date:
11/09/2010

Cross Section Data Entry			
BM Elevation:		0 ft	
Backsight Rod	Reading:	0 ft	
TAPE	FS	ELEV	NOTE
0	0	888.47913	GS
5	0	888.572354	GS
10	0	888.511825	GS
15	0	888.34598	GS
20	0	887.836966	GS
25	0	886.538971	GS
30	0	884.6788	GS
33	0	883.826213	GS
42	0	883.175455	GS
48	0	883.05673	GS
52	0	882.910264	GS
56	0	882.700029	LB
58	0	881.991422	GS
60	0	880.269024	GS
61	0	879.618628	LEW
61.5	0	878.725333	GS
63.5	0	878.651034	GS
64	0	878.647769	TW
65	0	878.736895	GS
66	0	878.907932	GS
67	0	878.928064	GS
67.5	0	879.382256	GS
68	0	879.625813	GS
69	0	881.029214	GS
70.5	0	881.454256	GS
74	0	882.05077	GS
76.5	0	882.335479	BKF
79	0	882.279817	GS
85	0	882.269851	GS
91	0	883.001258	GS
96	0	884.033747	GS
100	0	885.011109	GS
105	0	886.397563	GS
112	0	887.980946	GS
116	0	888.442301	GS
120	0	888.609257	GS
130	0	888.778565	GS

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	886.03	886.03	886.03
Bankful1 Elevation (ft)	882.34	882.34	88.34
Floodprone width (ft)	77.32	.----	$--2 .-6$
Bankful1 width (ft)	19.48	14.82	4.66
Entrenchment Ratio	3.97	---1	

Mean Depth (ft)
Maximum Depth (ft) Width/Depth Ratio Bankful1 Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station
1.82
76.5
2.29
3.69
6.47
34.01
17.95
1.89
57.02
71.84
0.3
0.66
15.53
1.39
5.37
0.26
71.84
76.5

Entrainment Formula: Rosgen Modified Shields Curve

Slope
$\begin{array}{lll}\text { Channe } & \text { Left Side } & { }_{0}^{\text {Right }} \text { Side }\end{array}$
Shear stress (lb/sq ft) Movable Particle (mm)

（Ұ）ио！！セィәઇヨ

River Name: Little White Oak Creek (Year 3)
Reach Name: R1
Cross Section Name: (Year 3) Cross Section 10 - Pool (R1)
Survey Date:
11/09/2010

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	886.345723	GS
4	0	885.824	GS
9	0	884.698386	GS
19	0	882.626846	GS
24	0	881.565434	GS
29	0	881.595007	GS
34	0	881.767258	GS
44	0	881.749858	GS
49	0	881.985365	GS
54	0	881.538707	GS
59	0	881.359276	GS
64	0	881.435774	GS
67	0	881.404951	GS
69	0	881.308515	GS
70	0	881.315598	BKF
71	0	881.261262	GS
72	0	880.676991	GS
74	0	879.31185	GS
75	0	879.027186	LEW
75	0	878.680899	GS
76	0	878.405048	GS
76.5	0	878.54975	GS
77	0	878.539544	GS
80	0	878.386016	GS
81	0	878.334285	GS
82	0	877.376296	TW
83	0	877.387325	GS
83	0	879.033263	REW
84	0	879.391491	GS
86	0	880.639867	GS
87.5	0	882.106927	RB
93	0	882.088673	GS
99	0	881.939318	GS
104	0	882.057804	GS
106	0	882.187411	GS
110	0	883.379207	GS
116	0	885.415107	GS
119	0	886.222416	GS
130	0	886.276029	GS

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	885.26	885.26	885.26
Bankfu11 Elevation (ft)	881.32	881.32	881.32
Floodprone width (ft)	109.06	--------	

Bankful7 Width (ft)	16.69	7.41	9.28
Entrenchment Ratio	6.53	----	---1
Mean Depth (ft)	2.08	1.61	2.45
Maximum Depth (ft)	3.94	2.91	3.94
Width/Depth Ratio	8.02	4.6	3.79
Bankful1 Area (sq ft)	34.66	11.91	22.74
Wetted Perimeter (ft)	20.46	11.24	14.82
Hydraulic Radius (ft)	1.69	1.06	1.53
Begin BKF Station	70	70	77.41
End BKF Station	86.69	77.41	86.69

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Slope
$\begin{array}{lll}\text { Channe1 } & \text { Left Side } & { }_{0}^{\text {Right }} \text { Side }\end{array}$
Shear Stress (1b/sq ft) Movable Particle (mm)

（Ұ）ио！！セィәઇヨ

River Name: Little White Oak Creek (Year 3)
Reach Name: R1
Cross Section Name: (Year 3) Cross Section 11 - Pool (R1)
Survey Date:
11/09/2010

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	885.860499	GS
5	0	885.954149	GS
14	0	885.523811	GS
19	0	885.360982	GS
24	0	884.850953	GS
26	0	884.695566	GS
29	0	883.740645	GS
34	0	882.187127	GS
38	0	880.940862	GS
42	0	880.705761	GS
48	0	880.642966	GS
52	0	880.729534	GS
56	0	880.617989	GS
58.5	0	880.575273	LB
59.5	0	880.401963	GS
62	0	878.871729	GS
63	0	878.601415	GS
64	0	878.455667	GS
65	0	877.898983	LEW
65.5	0	876.40614	TW
66	0	877.185615	GS
67.5	0	877.538002	GS
69	0	877.546547	GS
71	0	877.570611	GS
72	0	877.517195	GS
73	0	877.52271	GS
74	0	877.585256	GS
75	0	877.574535	GS
78	0	877.605742	GS
79.5	0	877.843412	REW
79.5	0	877.826467	GS
81	0	878.12024	GS
85	0	879.574055	GS
86	0	880.434286	BKF
91	0	880.337327	GS
96	0	880.545149	GS
101.5	0	881.569489	GS
106.5	0	882.827563	GS
111.5	0	883.988447	GS
116.5	0	884.77074	GS
121.5	0	885.034564	GS
130	0	885.176403	GS

Floodprone Elevation (ft)	884.45	884.45	884.45
Bankful1 Elevation (ft)	880.43	880.43	880.43
Floodprone Width (ft)	87.72	----	---
Bankful才 width (ft)	26.66	16.8	9.86
Entrenchment Ratio	3.29	----	----
Mean Depth (ft)	2.27	2.42	2.01
Maximum Depth (ft)	4.02	4.02	2.84
Width/Depth Ratio	11.74	6.94	4.91
Bankful1 Area (sq ft)	60.51	40.74	19.77
Wetted Perimeter (ft)	29.46	21.81	13.34
Hydraulic Radius (ft)	2.05	1.87	1.48
Begin BKF Station	59.34	59.34	76.14
End BKF Station	86	76.14	86

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Channe1 Left Side Right Side
0

Slope
shear stress (1b/sq ft) Movable Particle (mm)

（Ұ）ио！！セィәઇヨ

River Name: Little White Oak Creek (Year 3)
Reach Name: R1
Cross Section Name: (Year 3) Cross Section 12 - Riffle (R1)
Survey Date:
11/09/2010

Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	885.050579	GS
8	0	884.326429	GS
11	0	883.283706	GS
15	0	881.855269	GS
20	0	880.051583	GS
25	0	879.638414	GS
31	0	879.710466	GS
35	0	878.925684	GS
37.5	0	879.637126	BKF
38	0	879.364497	GS
40	0	878.227061	GS
41	0	877.87767	GS
41.5	0	877.585521	LEW
42.5	0	876.131511	GS
43	0	875.595617	TW
45	0	876.041597	GS
46	0	876.29106	GS
47	0	876.463696	GS
49	0	877.444476	GS
49	0	877.549631	REW
50	0	877.910347	GS
51.5	0	878.122473	GS
52.5	0	877.875294	GS
54	0	878.103052	GS
56	0	878.434225	GS
57	0	878.40966	GS
59	0	878.764094	GS
61.5	0	880.078619	GS
62.5	0	880.406568	GS
63.5	0	880.787485	RB
64.5	0	880.917988	GS
69.5	0	880.687149	GS
73.5	0	880.646076	GS
78.5	0	880.342149	GS
84	0	882.081119	GS
90	0	883.66376	GS
95	0	884.28379	GS
100	0	884.406182	GS

Cross Sectional Geometry

	Channe1	Left	Right
Floodprone Elevation (ft)	883.68	883.68	883.68
Bankfu11 Elevation (ft)	879.64	879.64	879.64
Floodprone width (ft)	80.32	----	---1
Bankful1 width (ft)	23.05	11.29	11.76

```
Entrenchment Ratio
Mean Depth (ft)
1.91
```

2.5
4.04
1.34
4.52
28.25
15.4
1.83
37.5
48.79
2.3 8.78
15.73
14.63
1.07
48.79
48.79
60.55

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

Slope
$\begin{array}{lll}\text { Channe1 } & \text { Left Side } & \text { Right Side } \\ 0 & 0 & 0\end{array}$
Shear stress (lb/sq ft) Movable Particle (mm)


```
River Name: Little White Oak Creek (Year 3)
Reach Name: R1A
Cross Section Name: (Year 3) Cross Section 13 - Riffle (R1A)
Survey Date: 11/08/2010
```


Cross Section Data Entry

BM Elevation:	0 ft
Backsight Rod Reading:	0 ft

TAPE	FS	ELEV	NOTE
0	0	887.807646	GS
10	0	887.610973	GS
25	0	887.697326	GS
30	0	887.564138	GS
34	0	887.668765	GS
39	0	887.5075	GS
47	0	887.379413	GS
53	0	887.578973	GS
55	0	887.911016	LB
57	0	887.211508	LEW
58	0	886.914573	GS
59	0	886.951896	TW
60	0	887.251344	REW
61	0	887.3577	GS
63	0	887.762267	BKF
69	0	887.585651	GS
74	0	887.652452	GS
79	0	887.659217	GS
89	0	887.648803	GS
99	0	887.798802	GS
109	0	887.49785	GS
125	0	887.576212	GS

Cross Sectional Geometry

Floodprone Elevation (ft)	Channe 1 888.61	$\begin{aligned} & \text { Left } \\ & 888.61 \end{aligned}$	Right 888.61
Bankfull Elevation (ft)	887.76	887.76	887.76
Floodprone Width (ft)	125		
Bankfull width (ft)	7.55	7.02	0.53
Entrenchment Ratio	16.56		
Mean Depth (ft)	0.46	0.49	0.05
Maximum Depth (ft)	0.85	0.85	0.11
Width/Depth Ratio	16.41	14.33	10.6
Bankfull Area (sq ft)	3.47	3.44	0.03
Wetted Perimeter (ft)	7.78	7.35	0.65
Hydraulic Radius (ft)	0.45	0.47	0.04
Begin BKF Station	55.44	55.44	62.46
End BKF Station	62.99	62.46	62.99

Entrainment Calculations

Entrainment Formula: Rosgen Modified Shields Curve

```
Shear Stress (lb/sq ft)
Movable Particle (mm)
```

（み）ио！！еләョヨ

River Name: Little white Oak Creek (Year 3)
Reach Name: R1
Profile Name: (Year 3) R1 Long. Profile (STA 14+00 -- 33+74)
Survey Date: 11/19/2010

Survey Data

1641.646
1656.86
1657.008
1662.626
1665.433
1667.12
1667.228
1690.123
1690.199
1690.894
1694.633
1709.874
1710.052
1716.208
1720.27
1720.902
1720.902
1730.16
1730.239
1732.822
1737.917
1738.425
1739.845
1746.444
1752.091
1752.195 1754.423 1770.815
1770.815
1770.968
1772.94
1786.062
1815.892
1816.845
1824.917
1841.048
1841.052
1841.442
1846.375
1846.375
1846.375
1865.826
1872.617
1873.174
1890.649
1890.649
1890.9
1898.914
1902.577
1918.921
1925.352
1925.352
1940.392
1940.392
1940.585
1945.861
1946.119
1953.66
1953.758
1972.436
1972.763
1972.763
1978.982
1993.181 1993.324
2004.459
878.853
880.043
880.051
879.152
880.066
879.564
879.952
878.961
879.926
878.918
879.734
877.723
879.25
879.745
879.013
879.676
878.862
879.645
878.648879 .619
878.842
879.612
879.546
878.807
879.559
878.682
878.253
879.545
879.061
879.513
879.477
878.738
878.431
879.479
878.381
879.5
879.349
877.702
879.338
879.007
879.303
877.989
879.269
878.645
880.028
882.166
882.606
882.74
882.234
882.498
882.741
882.314
882.41
882.788
882.887
882.702
881.679
882.051882 .7
882.571
882.71
882.054
882.129
882.431
881.634
882.105
882.52
2016.603
2017.185 2033.198 2042.614 2043.035 2059.702 2060.029 2062.94
2067.685 2072.424 2072.747 2078.022 2078.085 2091.385 2091.541 2100.641 2110.951
2110.951 2110.951 2123.214 2123.574 2145.681 2145.853 2150.155 2159.859 2160.114 2163.992 2182.713 2182.781 2184.255 2196.945 2200.078 2210.997 2211.234 2229.159 2229.283 2236.976 2250.308 2250.36 2254.085 2255.462 2267.038 2276.365 2289.254 2289.696 2295.292 2307.732 2307.942 2309.872 2323.921 2324.089 2326.563 2330.1
2335.793 2335.846 2338.949 2351.644 2351.899 2357.453 2369.522 2377.29 2383.071 2383.244 2383.555 2395.99
2396.464
878.502
879.222 878.39
879.228
879.23
878.04
879.171
877.944
879.203
877.934
879.202
878.579
878.305
879.131
879.119
877.886
879.133
878.212
879.117
877.917
879.118
878.032
878.53
879.077
878.45
879.137
879.089
877.8
877.376879 .027
877.832
879.018
876.993
878.996
878.25
879.019
879.012
877.871
878.827
877.939
880.918
880.771
881.431
2396.824
2418.047
2418. 336 2425.984 2427.496 2431.466 2432. 305 2441. 897 2441. 909 2449. 112 2449.665 2459.079 2459.405 2463.285 2475.421 2475.773 2481. 146 2499.742 2499.852 2511.414 2516.866 2520.462 2520.676 2537.988 2538.706 2543.768 2548. 291 2548.6
2574.479
2574.491
2577.835
2580.252 2585.5
2586.154 2600. 602 2600. 769 2615.1 2628.76
2628.862 2637.08 2643. 118 2643. 118 2663.021 2663.418 2663.683 2670.04 2673.994 2673.996 2688. 513 2690. 29 2690.513 2690.533 2709. 315 2717. 576 2717.99
2720.655 2729.238 2731.92 2736.244 2760.776 2761. 162 2765.576 2768. 358 2781. 803 2782.024
877.869
878.008
878.785
$877.969^{878.781}$ 877.19
878.576
878.214
874.949
877.168
878.167
878.174
877.314
878.183
877.142
876.914
878.042
878.072
876.313
878.088
877.374
878.053
877.177
876.971
878.028
877.156
877.973
877.385
877.983
877.881
876.751
876.919
877.901
877.966
877.448
876.914
877.817
877.918
876.229
877.885
876.406877 .899
877.88
876.695
877.829
2791.734

	877.791	880.054	
			880.344
	877.818		
$\begin{aligned} & 876.836 \\ & 876.72 \end{aligned}$			
	877.791		
874.763			
	$\begin{aligned} & 877.685 \\ & 877.683 \end{aligned}$		
876.969			880.283
		880.09	
876.375	877.638		
		879.782	
876.44			880.431
	$\begin{aligned} & 817.632 \\ & 877.625 \end{aligned}$		
876.957			
			880.382
		880.191	880.148
876.79			
	$\begin{aligned} & 877.727 \\ & 877.676 \end{aligned}$		
876.369			
		880.184	
876.747			
	877.643		
876.982			
			880.076
	877.639	880.49	
876.567	877.639		
		879.984	
			880.189
	$\begin{aligned} & 877.632 \\ & 877.679 \end{aligned}$		
876.405			
	877.593		
875.797			878949
	877.584		878.949
876.983			
			879.928
875.753		879.7	
	877.571		
875.596	$\begin{aligned} & 877.586 \\ & 877.549 \end{aligned}$	880.787	879.637
876.751			
		879.606	
			880.318
876.799	877.547		
		879.25	
	877.563		880.175
876.378			
		879.582	
876.663			
	877.535		

3218.525
3239.168 3239.237 3244.919 3250.606
3250.606
3250.73
3263.68
3275.18
3275.28
3285.914
3287.759
3287.759
3288.604
3294.124 3294.277
3303.856
3305.386
3305.512
3324.267
3326.752
3327.441
3342.26
3344.049
3344.693
3354.153
3354.235
3359.016
3368.195
3374.329
3374.744
3385.978
3386.368
3387.669
3393.429
3399.487
3399.887
3414.768
3416.719
3416.785
3425.285
3426.289
3437.443
3437.505
3451.665
3452.102
3456.622
3463.885
3473.861
3473.892
3481.772
3485.346
3491.48
3491.885
3505.538
3508.578
3509.476
3509.476
876.279
877.52
876.843
877.488
876.806
877.32
876.33
876.908
875.067
876.153
876.088
874.489
876.027
874.656
875.984
875.178
875.959
875.159
875.94
875.103
875.947
874.759
875.935
875.134
875.937
874.489
875.912
875.217
874.968
875.895
875.856
874.368
874.708
875.843
875.806
874.884
880.185
879.984
879.391
879.337
879.763
878.701
879.557
880.016
879.684
879.38
879.12
879.839
878.506
879.317
878.868
879.615
878.626
879.213
879.384
878.474
878.217
879.222

Cross Section / Bank Profile Locations

| Name | Type | Profile Station |
| :--- | :--- | :--- | :--- |
| (Year 3) Cross Section 9-- Pool | (R1)Pool XS | 1786 |
| (Year 3) Cross Section 10 - Pool | (R1)Pool XS | 2276 |
| (Year 3) Cross Section 11-Pool (R1)Pool XS | 2736 | |

Measurements from Graph
Bankful1 slope: 0.00183

Variable	Min	Avg	Max
S riffle	0.00093	0.00797	0.01777
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P-P	49	87.47	149.04
Pool length	14.29	33.57	69.42
Riffle length	12.25	19.69	29.05
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0

Length and depth measurements in feet, slopes in ft/ft.

River Name: Little white Oak Creek (Year 3)
Reach Name: R1
Profile Name: (Year 3) R1 Long. Profile (STA 14+00 -- 33+74)
Survey Date: 11/19/2010

DIST	Note
1400	LEW
1409.081	LEW
1426.577	LEW
1441.8	LEW
1454.112	LEW
1463.477	LEW
1478.154	LEW
1501.822	LEW
1517.25	LEW
1531.374	LEW
1551.287	LEW
1562.238	LEW
1587.148	LEW
1587.487	LEW
1606.783	LEW
1628.557	LEW
1641.646	LEW
1657.008	LEW
1667.12	LEW
1690.123	LEW
1709.874	LEW
1720.27	LEW
1730.16	LEW
1738.425	LEW
1752.195	LEW
1770.968	LEW
1786.062	XS9 - TW Intersect @ station 1786.062
1816.845	LEW
1841.052	LEW
1846.375	LEW

```
1873.174 LEW
1890.9 LEW
1898.914 LEW
1925.352 LEW
1940.585 LEW
1945.861 LEW
1953.66 LEW
1972.436 LEW
1993.181 LEW
2016.603 LEW
2042.614 LEW
2059.702 LEW
2072.424 LEW
2078.022 LEW
2091.385 LEW
2110.951 LEW
2123.214 LEW
2145.681 LEW
2159.859 LEW
2182.713 LEW
2211.234 LEW
2229.283 LEW
2250.308 LEW
2276.365 XS10
2289.696 LEW
2307.942 LEW
2324.089 LEW
2335.793 LEW
2351.644 LEW
2383.071 LEW
2383.244 LEW
2396.464 LEW
2418.047 LEW
2431.466 LEW
2441.909 LEW
2449.112 LEW
2459.405 LEW
2475.421 LEW
2499.742 LEW
2520.676 LEW
2537.988 LEW
2548.291 LEW
2574.479 LEW
2586.154 LEW
2600.769 LEW
2628.862 LEW
2643.118 LEW
2663.683 LEW
2673.994 LEW
2690.533 LEW
2717.576 LEW
2731.92 LEW
2736.244 XS11 - TW Intersect @ station 2736.244
2760.776 LEW
2781.803 LEW
2803.375 LEW
2827.604 LEW
2838.229 LEW
2842.274 LEW
2851.658 LEW
2875.263 LEW
2893.745 LEW
2913.325 LEW
2944.446 LEW
2955.818 LEW
2969.978 LEW
```

2985.795	LEW
3010.951	LEW
3045.08	LEW
3062.681	LEW
3072.627	LEW
3104.016	LEW
3114.565	LEW
3118.732	XS12 - TW Intersect @ station 3118.732
3127.227	LEW
3157.894	LEW
3187.889	LEW
3215.466	LEW
3239.237	LEW
3250.73	LEW
3275.28	LEW
3288.604	LEW
3294.277	LEW
3305.386	LEW
3326.752	LEW
3344.049	LEW
3354.153	LEW
3374.329	LEW
3385.978	LEW
3399.487	LEW
3416.719	LEW
3437.443	LEW
3452.102	LEW
3473.861	LEW
3491.885	LEW
3509.476	LEW

River Name: Little white Oak Creek (Year 3)
Reach Name: R1A
Profile Name: (Year 3) R1A Long. Profile (STA 0+00 -- 5+00)
Survey Date: 11/19/2010

Survey Data

DIST	CH	WS BKF	LB	RB
0	891.031			
0		891.923		
1.708			891.969	
1.981				891.848
7.68		891.679		
7.914	891.196			
15.958	891.163			
16.377	890.742			
16.413		891.585		
25.373				891.802
30.573		891.491		
31.022	890.633			
38.612			891.226	
43.97	890.983			
43.97		891.344		
57.889		890.848		
57.99	890.306			
71.795		890.764		
72.169	890.278			
73.443			891.246	
75.74				890.665
76.85				890.311
86.944	890.193			
87.342		890.634		
101.945	889.945			
102.077		890.52		
104.65 109.576				890.499
109.576 109.718		890.367		
109.718	889.73			
110.019				890.701
122.553	889.806			
122.553		890.369		
124.074			890.576	
129.57	889.805			
129.996		890.33		
136.799				890.267
137.654 140.204			890.346	
140.204		890.088		
140.369	889.839			
158.516		889.471		
158.516	889.16			
169.72 171.677				889.439
171.677 171.734		889.175		
171.812	888.832	888.828		
171.812			889.755	
182.697		888.932		
182.929	888.646			
190.749	888.504			
190.909		888.923		

191.852			889.348	
202.444	888.327			
202.658		888.759		
214.484		888.669		
214.788	888.308			
220.703		888.549		
220.809	888.083			
228.791		888.547		
228.992	888.448			
232.645				888.785
233.196		888.324		
233.551	888.095			
239.423			888.832	
244.691	887.633			
244.691		888.038		
250.239				888.684
251.685	887.554			
251.752		888.003		
253.563			888.465	
259.325		887.884		
259.455	887.529			
270.227	887.392			
270.227		887.86		
279.427	887.408			
279.681		887.867		
282.454			888.41	
290.354				888.222
290.354	887.388			
290.422		887.785		
298.923	887.188			
299.12		887.8		
300.881			888.379	
308.888				887.877
309.553		887.482		
309.868	887.087			
321.172				887.705
323.408	887.153			
323.408			887.871	
323.663		887.454		
332.817				887.603
333.892	887.122			
333.892		887.376		
342.382			887.771	
343.13		887.331		
343.41	886.866			
343.704				888.02
350.321			887.716	
350.339		887.272		
350.592	886.8			
351.735				888.001
355.896	886.748			
356.269		887.243		
361.464		887.259		
361.855	886.521			
366.475	886.704			
366.475				887.924
366.619		887.189		
371.55	887.004			
371.921		887.225		
375.594	886.915	887.212	887.762	887.579
387.527	886.617			
389.255		887.001		
396.265			887.62	
400.128		886.989		
400.306	886.43			
404.088				887.523

413.779
414.072
414.512 422.017 422.232 431.165
431.681
442.419
442.419
451.303
451.303
451.535
454.111
458.29
458.514
470.75
470.794
479.978
480.054
480.582
481.969
488.069
488.069
488.369
490.847
496.328
496.393
500.621
501.622
501.747
501.747
886.671
886.97
886.547
886.962
886.423
886.936
886.611
886.428
886.776
886.836
886.618
886.78
886.621
886.706
886.444
886.214
886.51
885.927
886.462
886.499

Cross Section / Bank Profile Locations
Name Type Profile Station
(Year 3) Cross Section 13 - Riffle (R1A)Riffle XS

Measurements from Graph
Bankfull slope: 0

Variable	Min	Avg	Max
S riffle	0	0	0
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P P P	0	0	0
Pool length	0	0	0
Riffle length	0	0	0
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	
Length and depth measurements in feet, slopes in ft/ft.			

RIVERMORPH PROFILE SUMMARY
Notes

River Name: Little white Oak Creek (Year 3)

Reach Name: R1A
Profile Name: (Year 3) R1A Long. Profile (STA 0+00 -- 5+00)
Survey Date: 11/19/2010

DIST	Note
0	LEW
7.68	LEW
16.413	LEW
30.573	LEW
43.97	LEW
57.889	LEW
71.795	LEW
87.342	LEW
102.077	LEW
109.576	LEW
122.553	LEW
129.996	LEW
140.204	LEW
158.516	LEW
171.677	LEW
171.734	LEW
182.697	LEW
190.909	LEW
202.658	LEW
214.484	LEW
220.703	LEW
228.791	LEW
233.196	LEW
244.691	LEW
251.752	LEW
259.325	LEW
270.227	LEW
279.681	LEW
290.422	LEW
299.12	LEW
309.553	LEW
323.663	LEW
333.892	LEW
343.13	LEW
350.339	LEW
356.269	LEW
361.464	LEW
366.619	LEW
371.921	LEW
375.594	XS13 - TW Intersect @ station 375.594
389.255	LEW
400.128	LEW
414.072	LEW
422.232	LEW
431.681	LEW
442.419	LEW
451.535	LEW
458.29	LEW
470.75	LEW
480.054	LEW
488.369	LEW
496.393	LEW
501.622	LEW

River Name: Little white Oak Creek (Year 3)
Reach Name: R2
Profile Name: (Year 3) R2 Long. Profile (STA 25+13 -- 45+60)
Survey Date: 11/19/2010

Survey Data

DIST	CH	WS	BKF	LB	RB
2513	869.834				
2513		870.991			
2513				873.449	
2513.334					872.486
2525.359	868.714				
2525.359				872.267	
2526.388		871.11			
2527.778					872.452
2549.761					873.389
2552.838		871.178			
2553.774				873.623	
2553.774	869.284				
2583.918					873.226
2586.041		871.057			
2587.715				873.685	
2587.715	869.373				
2604.391	869.666				
2604.391		871.036			
2604.391				873.645	
2608.619					873.063
2642.347	870.064	870.82		873.271	873.735
2677.993					872.553
2679.808 2682.045	869.531	870.972			
2682.045 2682.045	869.531			873.427	
2714.73				873.528	
2718.491		870.939			
2721.168	869.34				
2721.168					873.262
2747.834					873.35
2749.053	869.418				
2752.321		870.974			
2756.056				873.597	
2778.865				873.727	
2790.25	869.56				
2790.25					873.515
2829.386	869.573				
2829.386					873.211
2833.032 2837.068		870.798		873.13	
2855.351				873.13 873.431	
2858.942		870.805			
2860.518	869.463				
2861.693					873.168
2888.819					873.148
2892.536		870.836			
2892.536 2892	869.742				
2892.536				873.183	
2919.333 2919.333		870.84		872.932	

2919.333
2924.183
2944.19
2945.328
2947.401
2947.401
2975.615
2975.615
2978.878
2982. 37
2997.657
3000.958
3000.958
3000.958
3027.106
3028.587
3031.836
3031.836
3064.177
3065.68
3067.691
3073.355
3116.413
3120.726
3127.972
3132.029
3132.029
3165.554
3166.929
3168.003
3168.003
3198.711
3199.076
3199.606
3202.861
3222.49
3233.357
3233.357
3233.443
3253.525
3253.525
3253.525
3256.577
3269.67
3270.945
3274.526
3274.526
3298.641
3308.111
3308.111
3308.111
3342.062
3345.168
3345.168
3345.168
3390.501
3394.136
3394.888
3395.849
3428.742
3432.977
3436.213
3436.213
3455.756 3455.756 3458.349
869.708
870.686
869.494 869.375
870.55
869.341
870.655
870.662
869.294
869.473
870.664
869.159870 .547
870.617
869.311
870.388
869.715
870.282
868.949
868.752
870.351
870.41
868.395
870.397
868.79
868.707
870.335
870.332
869.341
868.305
869.795
869.792
868.416
868.06
869.584
873.921
873.299
872.579
872.94
873.064
872.546
872.929
873.106
872.635
872.755
873.324
872.669873 .121
872.921
872.789
872.625
873.17
873.036
872.787
872.781
872.403
872.948
872.862
872.077
872.749
872.181
872.391
872.488
872.619
872.885
872.185
872.231
872.716
872.669
3463.281
3477.905
3482.549
3484.654
3486.48
3502.164
3502.837
3506.463
3509.923
3540.131
3540.131
3540.774
3541.816
3581.253
3581.253
3581.253
3585.959
3624.362
3645.959
3651.414
3656.305
3656.305
3689.642
3690.402
3691.864
3691.864
3733.507
3734.503
3735.27
3736.937
3771.204
3773.433
3775.022
3775.022
3796.58
3796.58
3800.99
3809.61
3842.045
3846.422
3849.396
3851.776
3852.542
3854.614
3857.782
3857.782
3886.202
3886.202
3886.202
3888.625
3921.127
3924.98
3924.98
3926.432 3950.133 3952.234 3953.942 3955.797 3979.903 3980.057 3981.014 3981.014 4009.738 4009.738 4011.842 4013.261
872.069
872.516
869.67
868.265
872.236
872.278
872.371
872.574
872.046
872.043
871.885
872.018872 .127
871.547
871.843
871.02
871.684
870.489
871.895
871.766
871.661
871.764
871.827
871.697
871.856
871.853
871.512
871.72
871.782
871.815
871.673
870.699
871.768
870.605
871.853
871.625
869.03
4040.612
4040.612 4043.542 4043.822
4072.772 4107.045 4110.32
4113.538
4113.538
4130.595
4135.158
4138.885
4138.885
4163.484
4164.621
4168.007
4168.097
4193.703
4195.382
4201.098
4201.098
4233.983
4233.983
4236.78
4240.742
4262.379 4262.532 4263.523 4264.793 4288.229
4294.065
4294.065
4294.754
4310.311
4310.311
4312.926
4315.98
4340.014
4344.36
4348.44
4348.44
4374.905
4374.905
4379.912
4383.567
4420.003
4421.208
4421.478
4423.441
4437.49
4440.355
4443.529 4443.529
4466.365
4466.365
4470.793
4474.168
4504.463
4509.442
4509.442
4521.913
4525.447 4564.219 4564.219 4564.219 4571.201
868.084
869.006
868.001868 .886
868.977
868.109
868.955
867.348
868.919
867.176
868.802
867.098
867.989
868.816
867.981
868.825
868.85
867.828
866.952
868.862
868.716
867.422
867.622
868.662
867.867
868.792
868.764
867.111
867.33
868.758
868.743
867.319
867.468868 .606
867.323
868.605
.
871.493

	870.832	
	870.62	
868.862		
		$\begin{aligned} & 870.448 \\ & 870.991 \end{aligned}$
868.716		

870.753
870.753
871.019
870.937
870.54
870.246
870.541
870.59
870.582
870.741
870.689871 .075
870.789
871.533
4577.503
4580.146
4580.146
4580.146
4599.377
4602.905
871.322
868.61
867.937868 .561

Cross Section / Bank Profile Locations

Name		Type	Profile Station
(Year 3)	Cross Section	- Riffle (R2)Riffle xs	2642
(Year 3)	Cross Section 3	- Pool (R2)Pool XS	3116
(Year 3)	Cross Section 2	- Pool (R2) Pool xs	3624
(Year 3)	Cross Section 4	- Riffle (R2)Riffle XS	4072
(Year 3)	Cross Section 5	- Pool (R2)Pool XS	4525

Measurements from Graph
Bankfull Slope: 0.00116

Variable	Min	Avg	Max
S riffle	0.00314	0.00568	0.01194
S pool	0		0
S run	0	0	0
s glide	0	0	0
P - P	61.25	129.41	200.08
Pool 1 length	20.42	35.18	65.33
Riffle length	22.46	32.26	38.79
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0

Length and depth measurements in feet, slopes in ft/ft.
RIVERMORPH PROFILE SUMMARY Notes

River Name: Little white Oak Creek (Year 3)
Reach Name: R2
Profile Name: (Year 3) R2 Long. Profile (STA 25+13 -- 45+60)
Survey Date: 11/19/2010
DIST Note
2513
2526.388 LEW
2552.838 LEW
2586.041 LEW
2604.391 LEW
2642.347 XS1 - TW Intersect @ station 2642
2679.808 LEW
2718.491 LEW
2752.321 LEW
2833.032 LEW
2858.942 LEW
2892.536 LEW
2919.333 LEW
2945.328 LEW
2978.878 LEW

3000.958	LEW
3028.587	LEW
3067.691	LEW
3116.413	XSW - TW Intersect @ station 3116
3127.972	LEW
3166.929	LEW
3199.076	LEW
3233.443	LEW
3253.525	LEW
3270.945	LEW
3308.111	LEW
3345.168	LEW
3394.888	LEW
3432.977	LEW
3458.349	LEW
3482.549	LEW
3506.463	LEW
3540.774	LEW
3581.253	LEW
3624.362	XS3 - TW Intersect @ station 3624
3651.414	LEW
3690.402	LEW
3735.27	LEW
3773.433	LEW
3800.99	LEW
3849.396	LEW
3854.614	LEW
3886.202	LEW
3926.432	LEW
3952.234	LEW
3980.057	LEW
4011.842	LEW
4043.542	LEW
4072.772	XS4 - TW Intersect @ station 4072
4110.32	LEW
4135.158	LEW
4164.621	LEW
4195.382	LEW
4236.78	LEW
4263.523	LEW
4294.065	LEW
4312.926	LEW
4344.36	LEW
4379.912	LEW
4421.478	LEW
4440.355	LEW
4470.793	LEW
4504.463	LEW
4525.447	XS5 - TW Intersect @ station 4525
4564.219	LEW
4580.146	LEW

River Name: Little white Oak Creek (Year 3)
Reach Name: R2A
Profile Name: (Year 3) R2A Long. Profile (STA 0+00 -- 3+26)
Survey Date: 01/19/2011

Survey Data

DIST	CH	WS	BKF	LB	RB
0	874.449				
0					877.113
0.157				876.887	
0.295		876.057			
10.55				876.823	
10.946					877.378
11.503	875.005				
11.661		876.118			
21.753				876.805	
22.299	875.125				
22.299		876.082			
25.484					877.149
40.891		875.987			
41.93				876.948	
41.93 46.612	874.902				
46.612 49.095				876.987	876.948
51.277	875.185			876.987	
51.943		876.034			
52.155					877.117
63.589		875.917			
63.589 63.589	874.891				876.97
63.589 66.304				877	876.97
76.745				876.667	
78.276		875.656			
79.771	874.507				
79.8 87					876.884
87.47 87.47	874.113				877.002
88.148		875.655			
90.897				876.906	
94.397					876.641
94.698	874.161				
94.981		875.666			
100.241		875.45			
100.241					876.291
100.241	874.1				
103.015 124.478				876.66	
124.478 142.082	873.818	874.927		875.912	876.191
142.082 142.082	873.715			876.08	
142.505		874.481			
143.171					875.86
151.53					875.819
155.677	873.147				
155.677		874.406			
155.677				875.664	
168.355		874.164			
168.842				876.007	

168.842
170.417
182.4
182.497
182.515
183.511
197.549
198.161
198.534
198.534
211.425
214.915
215.015
215.667
226.177
226.177
226.177
230.893
241.876 243.176 243.912 243.912 256.015 258.712 259.488 260.368 270.245
273.906
273.906
274.558
287.185
287.745
287.856 289.079
297.85
297.85
298.306
298.484
310.486
311.484
315.204
316.786
317.284
318.497
872.893
873.356
874.093
875.569
875.342
875.342
875.467
874.248
872.818
872.712
873.974
873.716
872.577
873.25
872.369
871.94
873.179
872.357
872.627
871.834
872.744
870.873
872.462
871.367
874.84
874.365
874.319
874.317
874.021
874.202
873.882
873.687
875.112
874.771
874.65
875.268
874.319
873.396
873.641
874.69
873.868
873.861

Profile Station

Name	Type	Profile Station
		124

Measurements from Graph
Bankfull slope: 0

Variable	Min	Avg	Max
s riffle	0	0	0
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	0	0	0
Pool 1 length	0	0	0
Riffle length	0	0	0
Dmax riffle	0	0	0

```
Low bank ht 0 0 0
```

Length and depth measurements in feet, slopes in ft/ft.
\square

RIVERMORPH PROFILE SUMMARY
Notes

River Name: Little white Oak Creek (Year 3)
Reach Name: R2A
Profile Name: (Year 3) R2A Long. Profile (STA 0+00 -- 3+26)
Survey Date: 01/19/2011
DIST Note
0.295 LEW
11.661 LEW
22.299 LEW
40.891 LEW
51.943 LEW
63.589 LEW
78.276 LEW
88.148 LEW
94.981 LEW
100.241 LEW
124.478 XS6 - TW Intersect @ station 124.478
142.505 LEW
155.677 LEW
168.355 LEW
182.497 LEW
198.161 LEW
215.667 LEW
226.177 LEW
243.176 LEW
259.488 LEW
274.558 LEW
287.856 LEW
298.484 LEW
311.484 LEW

River Name: Little white Oak Creek (Year 2)
Reach Name: R2B
Profile Name: (Year 2) R2b Long. Profile (STA 9+35 -- 14+86)
Survey Date: 11/18/2009

Survey Data

DIST	CH	WS	BKF	LB	RB	P3	P4
924.61	877.23						
924.61							
$\begin{aligned} & 924.61 \\ & 925.679 \end{aligned}$		877.98					

933.761
935.004
935.004
936.758
941.173
943.268
943.795
945.385
945.857
953.135
955.511
958.117
958.58
965.379
967.252
968.21
972.1
973.197
976.199
977.147
981.288
987.126
988.087
988.183
990.685
998.28
998.579
998.862
1002.065
1007.894
1008.257
1008.503
1015.368
1016.127
1016.51
1017.003
1028.669
1028.721
1028.721
1034.535
1035.896
1036.589
1042.318
1044.857
1044.857
1045.16
877.49
877.87
877.58
877.79
877.7
877.43
877.31
876.96
876.81
877.26
877.17
876.99
877.06
876.57

877
876.49
876.63
876.98
876.87
876.55
876.51
876.23
876.34
876.22
875.75
878.17
878.17
878.19
877.99
877.66
877.44
877.58
877.52
877.37
877.59
876.96
877.52
876.98
876.84
1051.886
1052.112
1053.059
1054.044
1064.07
1064.07
1064.171 1065.01
1076.668
1080.245
1080.245
1080.245
1092.231
1095.112
1095.112
1095.191
1104.18
1104.557
1106.005
1106.005
1118.173
1118.173
1118.173
1121.504
1125.567
1129.724
1129.724
1129.724
1137.277
1138.117
1138.117
1139.334
1149.049
1150.107
1151.385
1151.478
1163.11
1164.93
1169.904
1169.904
1177.929
1179.61
1179.841
1183.142
1192.223
1192.323
1193.25
1193.729
1206.618
1207.98
1208.38
1209.471
1217.616
1217.616
1217.616
1219.635
1229.62
1229.62
1229.62
1230.876
1242.49
1243.605
1243.605
1243.605
1254.865
1255.71
875.8
875.62
875.41
875.77
875.41
875.59
874.78
875.25
875.11
874.66
875.13
874.53
874.5

875
874.82
874.44
874.37
874.71
874.67
874.07
874.63
874.18
874.52
874.1
873.86
873.71
874.23
874.18
874.12
873.93
873.43
873.17
873.36
876.51
876.46
876.91

876
876.07
876.05
875.79
876.21
875.65
876.46
876.08
876.12
876.07
876.03
875.92
875.7
875.74
875.23
875.28
875.21
875.2
874.81
875.01
874.93
875.04
875.11
874.8
874.4
874.46
874.17
874.12
1255.71
1256.951 1263.43 1263.43
1265.268
1268.413
1269.283
1278.311
1279.697
1279.798
1279.798
1295.728
1297.505
1297.505
1301.036
1311.743
1315.122
1315.122
1315.142
1328.975
1340.098
1340.623
1341.215
1342.305
1349.141
1349.141
1349.81
1352.01
1360.588
1360.958
1361.215
1361.74
1375.751
1375.751
1376.583
1377.717
1386.652
1389.809
1390.288
1390.288
1401.083
1401.288
1401.304
1404.106
1413.858
1415.061
1415.603
1415.603 1425.579 1428.077
1433.106 1433.565 1442.854 1443.387
1446.568
1448.881
1468.562
1470.06
1470.809 1476.969
872.9 872.89
873.26
872.84
872.21
873.1
872.79
873.97
873.96
873.28
873.64
873.3
873.37
872.71
872.87
872.04
871.48
871.64
871.05
870.88
870.08
870.45
870.56
869.99
870.1

	871.61
871.49	
	870.9

870.95
871.14
870.78
870.87
870.98
870.54

870
869.34
869.92
871.76
871.94
871.29
871.61
870.9
$\begin{array}{rr}872.9 & 872.59 \\ & 872.45\end{array}$
869.51
869.21
870.02
870.02
868.95 866.12
870.34
870.52
870.15

Profile Station

Name
Type

Cross Section / Bank Profile Locations
(Year 2) Cross Section 7 - Riffle (R2B)Riffle XS

Measurements from Graph
Bankfull slope: 0.01641

Variable	Min	Avg	Max
S riffle	0.01252	0.03485	0.04758
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	30.37	42.24	55.12
Pool 1ength	13.5	17.51	23.62
Riffle length	5.06	7.76	10.69
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	0

Length and depth measurements in feet, slopes in ft/ft.
RIVERMORPH PROFILE SUMMARY Notes

River Name: Little white Oak Creek (Year 2)
Reach Name: R2B
Profile Name: (Year 2) R2B Long. Profile (STA 9+35 -- 14+86)
Survey Date: 11/18/2009

DIST	Note
-124.61	REW
933.761	REW
943.795	REW
945.385	REW
958.117	REW
968.21	REW
976.199	REW
988.087	REW
998.28	REW
1008.257	REW
1015.368	REW
1028.669	REW
1035.896	REW
1045.16	REW
1052.112	REW
1064.171	REW
1080.245	REW
1095.191	REW
1104.557	REW
1118.173	REW
1129.724	REW
1138.117	REW
1151.385	REW
1164.93	REW
1177.929	REW
1192.323	REW
1209.471	REW
1217.616	REW
1229.62	REW
1243.605	REW
1254.865	REW

1265.268 REW
1279.697
1295.728
1315.142 1328.975 1341.215 1349.81 1360.588 1376.583 1390.288 1401.304 1415.061 1433.565 1448.881 1470.06

REW REW
XS7 - TW Intersect @ station 1328
REW REW REW REW REW REW REW REW REW REW

River Name: Little white Oak Creek (Year 3)
Reach Name: R2D
Profile Name: (Year 3) R2d Long. Profile (STA 2+84 -- 7+79)
Survey Date: 11/19/2010

Survey Data

DIST	CH	WS	BKF	LB	RB
276.5	869.371				
276.5		869.996			
276.5					870.904
278.759				870.852	
290.016	869.607	869.955		870.488	870.636
298.559					870.704
299.905				870.437	
300.239		869.908			
300.403	869.442				
308.902	868.723				
308.902				870.213	
310.758		869.863			
313.312					870.753
330.559					870.763
331.716		869.782			
331.788	869.502				
333.038				870.751	
347.678					870.301
347.678	868.804				
348.118		869.751			
349.219				870.109	
359.131 359.131	868.952				870.006
359.331		869.696			870.006
364.333				870.502	
376.003				870.043	
378.023		869.656			
378.144	869.222				
378.555					869.92
391.534					869.874
393.84	868.909				
393.84 394.041				869.938	
394.041 404.799		869.243			869.688
405.936		869.106			
406.049 406.049				869.602	
406.049 418.274	$\begin{aligned} & 868.794 \\ & 868.567 \end{aligned}$				
418.274					869.637
418.416		868.946			
$\begin{aligned} & 419.683 \\ & 433.053 \end{aligned}$				$\begin{aligned} & 869.346 \\ & 869.48 \end{aligned}$	

437.601
437.601
437.673
448.187
448.761
448.889
449.95
461.898
867.923
868.59
868.599
869.187
869.046
462.023
462.084 464.746
471.737
471.737
471.799
473.926 480.264 483.534 483.878 483.878 495.885 495.885 496.197 497.293
511.558
511.558
511.634
513.324
520.661
521.71
521.856
521.856
535.383
535.383
535.797
537.972
547.702
548.054
548.054
550.099
554.242
554.557
554.665
555.219
561.849
563.333
563.375
563.415
563.834
567.536
569.477
569.477
569.477
573.034
573.317
587.857
588.3
588.409
588.608
609.591
609.695
609.695
614.734
625.257
628.543
628.543
628.543
638.94
639.359
639.366
641.905
646.268
646.588
647.413
648.452
868.389
867.863
868.157
867.992

```
867.287
867.808
```

867.491
867.287
867.61
867.108
866.796 866.514
866.774
866.875
866.755
866.237
865.293
865.254
866.231
866.2
865.658
865.76
866.155
866.013
865.736
865.662
865.387
865.502
865.186
865.484
865.176
865.513
865.026
868.811
869.129
868.989
868.74
868.824
868.753
868.475
868.629
868.23
868.024
868.066
867.829
867.367
868.134
867.459
867.733
867.526
867.722
867.544
867.23
867.36
867.41
867.076
866.507
866.777
865.878
866.132
866.12
866.089
866.028
865.989
865.894
865.845
866.044
864.159
864.87
686.193
696.493
697.906
698.017
699.132
711.112
712.439
712.439
712.511
722.905
722.905
723.453
724.203
732.937
732.954
733.409
733.508
735.848
736.136
736.201
736.419
742.222
747.982
748.193
865.057
865.415
659.44
662.366
669.849
670.5
670.708
670.894
682.312
682.312
682.611
864.556
864.744
864.477
864.554
864.083
864.45
864.081
864.222
862.683
863.704

Cross Section / Bank Profile Locations
Name Type Profile Station
(Year 3) Cross Section 8 - Riffle (R2D)Riffle XS 335

Measurements from Graph
Bankfull slope: 0

Variable	Min	Avg	Max
S riffle	0	0	0
S pool	0	0	0
S run	0	0	0
S glide	0	0	0
P - P	0	0	0
Pool length	0	0	0
Riffle length	0	0	0
Dmax riffle	0	0	0
Dmax pool	0	0	0
Dmax run	0	0	0
Dmax glide	0	0	0
Low bank ht	0	0	
Length and depth measurements in feet, slopes in ft/ft.			

River Name: Little white Oak Creek (Year 3)
Reach Name: R2D
Profile Name: (Year 3) R2d Long. Profile (STA 2+84 -- 7+79)
Survey Date: 11/19/2010

DIST	Note
276.5	LEW
290.016	XS8 - TW Intersect @ station 290
300.239	LEW
310.758	LEW
331.716	LEW
348.118	LEW
359.331	LEW
378.023	LEW
394.041	LEW
405.936	LEW
418.416	LEW
437.673	LEW
448.761	LEW
462.023	LEW
471.799	LEW
483.534	LEW
495.885	LEW
511.634	LEW
521.71	LEW
535.797	LEW
547.702	LEW
554.557	LEW
563.375	LEW
567.536	LEW
573.317	LEW
588.409	LEW
609.591	LEW
628.543	LEW
638.94	LEW
646.268	LEW
659.331	LEW
670.708	LEW
682.611	LEW
698.017	LEW
712.511	LEW
723.453	LEW
733.508	LEW
736.201	LEW

River Name:
Reach Name:
Sample Name:
Survey Date:

Little white Oak Creek (Year 3)
R1
(Year 3) R1 Reachwide Pebble Count
11/03/2010

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	24	23.53	23.53
0.062-0.125	1	0.98	24.51
0.125-0.25	9	8.82	33.33
0.25-0.50	14	13.73	47.06
0.50-1.0	13	12.75	59.80
1.0-2.0	17	16.67	76.47
2.0-4.0	1	0.98	77.45
4.0-5.7	4	3.92	81.37
5.7-8.0	6	5.88	87.25
8.0-11.3	6	5.88	93.14
11.3-16.0	4	3.92	97.06
16.0-22.6	3	2.94	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.04
D35 (mm)	0.28
D50 (mm)	0.62
D84 (mm)	6.73
D95 (mm)	13.53
D100 (mm)	22.6
Silt/clay (\%)	23.53
Sand (\%)	52.94
Grave1 (\%)	23.53
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles = 102.

(Year 3) R1A Reachwide Pebble Count

\diamond (Year 3) R1A Reachwide Pebble Count (PC)
© (Year 0) R1A Reachwide Pebble Count (PC)

A (Year 1) R1A Reachwide Pebble Count (PC)

- (Year 2) R1A Reachwide Pebble Count (PC)

River Name: Little white Oak Creek (Year 3)

Reach Name:
Sample Name:
Survey Date:

R1A

(Year 3) R1A Reachwide Pebble Count
11/03/2010

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	39	78.00	78.00
0.062-0.125	0	0.00	78.00
0.125-0.25	5	10.00	88.00
0.25-0.50	3	6.00	94.00
$0.50-1.0$	1	2.00	96.00
1.0-2.0	2	4.00	100.00
2.0-4.0	0	0.00	100.00
4.0-5.7	0	0.00	100.00
5.7-8.0	0	0.00	100.00
$8.0-11.3$	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.01
D35 (mm)	0.03
D50 (mm)	0.04
D84 (mm)	0.2
D95 (mm)	0.75
D100 (mm)	2
Silt/clay (\%)	78
Sand (\%)	22
Grave1 (\%)	0
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=50$ (need at least 60).

River Name: Little white Oak Creek (Year 3)

Reach Name:
Sample Name:
Survey Date:

R2

(Year 3) R2 Reachwide Pebble Count
$11 / 03 / 2010$

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	19	19.00	19.00
0.062-0.125	4	4.00	23.00
0.125-0.25	10	10.00	33.00
0.25-0.50	21	21.00	54.00
0.50-1.0	11	11.00	65.00
1.0-2.0	11	11.00	76.00
2.0-4.0	3	3.00	79.00
4.0-5.7	5	5.00	84.00
5.7-8.0	4	4.00	88.00
$8.0-11.3$	5	5.00	93.00
11.3-16.0	4	4.00	97.00
16.0-22.6	1	1.00	98.00
22.6-32.0	2	2.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.05
D35 (mm)	0.27
D50 (mm)	0.45
D84 (mm)	5.7
D95 (mm)	13.65
D100 (mm)	32
Silt clay (\%)	19
Sand (\%)	57
Grave1 (\%)	24
Cobb7e (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=100$.
(Year 3) R2A Reachwide Pebble Count

\diamond (Year 3) R2A Reachwide Pebble Count (PC)
© (Year 0) R2A Reachwide Pebble Count (PC)

A (Year 1) R2A Reachwide Pebble Count (PC)

- (Year 2) R2A Reachwide Pebble Count (PC)

River Name: Little white Oak Creek (Year 3)

Reach Name:
Sample Name:
Survey Date:

R2A
(Year 3) R2A Reachwide Pebble Count
11/03/2010

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	29	58.00	58.00
0.062-0.125	0	0.00	58.00
$0.125-0.25$	5	10.00	68.00
0.25-0.50	0	0.00	68.00
$0.50-1.0$	1	2.00	70.00
1.0-2.0	2	4.00	74.00
2.0-4.0	0	0.00	74.00
4.0-5.7	1	2.00	76.00
5.7-8.0	1	2.00	78.00
$8.0-11.3$	3	6.00	84.00
11.3-16.0	3	6.00	90.00
16.0-22.6	3	6.00	96.00
22.6-32.0	2	4.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.02
D35 (mm)	0.04
D50 (mm)	0.05
D84 (mm)	11.3
D95 (mm)	21.5
D100 (mm)	32
Silt/clay (\%)	58
Sand (\%)	16
Grave1 (\%)	26
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=50$ (need at least 60).

River Name: Little white Oak Creek (Year 3)

Reach Name:
Sample Name:
Survey Date:

R2B

(Year 3) R2B Reachwide Pebble Count
11/03/2010

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	50	100.00	100.00
0.062-0.125	0	0.00	100.00
0.125-0.25	0	0.00	100.00
0.25-0.50	0	0.00	100.00
0.50-1.0	0	0.00	100.00
1.0-2.0	0	0.00	100.00
2.0-4.0	0	0.00	100.00
4.0-5.7	0	0.00	100.00
$5.7-8.0$	0	0.00	100.00
$8.0-11.3$	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.01
D35 (mm)	0.02
D50 (mm)	0.03
D84 (mm)	0.05
D95 (mm)	0.06
D100 (mm)	0.06
Siltclay (\%)	100
Sand (\%)	0
Grave1 (\%)	0
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=50$ (need at least 60).

(Year 3) R2D Reachwide Pebble Count

\diamond (Year 3) R2D Reachwide Pebble Count (PC)

- (Year 0) R2D Reachwide Pebble Count (PC)

A (Year 1) R2D Reachwide Pebble Count (PC)
(Year 2) R2D Reachwide Pebble
Count (PC)

River Name: Little white Oak Creek (Year 3)

Reach Name:
Sample Name:
Survey Date:

R2D

(Year 3) R2D Reachwide Pebble Count
11/03/2010

Size (mm)	TOT \#	ITEM \%	CUM \%
0-0.062	46	92.00	92.00
0.062-0.125	0	0.00	92.00
0.125-0.25	2	4.00	96.00
0.25-0.50	0	0.00	96.00
0.50-1.0	2	4.00	100.00
1.0-2.0	0	0.00	100.00
2.0-4.0	0	0.00	100.00
4.0-5.7	0	0.00	100.00
5.7-8.0	0	0.00	100.00
$8.0-11.3$	0	0.00	100.00
11.3-16.0	0	0.00	100.00
16.0-22.6	0	0.00	100.00
22.6-32.0	0	0.00	100.00
32-45	0	0.00	100.00
45-64	0	0.00	100.00
64-90	0	0.00	100.00
90-128	0	0.00	100.00
128-180	0	0.00	100.00
180-256	0	0.00	100.00
256-362	0	0.00	100.00
362-512	0	0.00	100.00
512-1024	0	0.00	100.00
1024-2048	0	0.00	100.00
Bedrock	0	0.00	100.00

D16 (mm)	0.01
D35 (mm)	0.02
D50 (mm)	0.03
D84 (mm)	0.06
D95 (mm)	0.22
D100 (mm)	1
Silthlay (\%)	92
Sand (\%)	8
Grave1 (\%)	0
Cobble (\%)	0
Boulder (\%)	0
Bedrock (\%)	0

Total Particles $=50$ (need at least 60).

Project Name: County, State:		Little White Oak Creek Polk County, North Carolina			Installation Date: Year of Sampling		12/4/2007			
Crest Gauge Information			2008	2008	2009	2010	2011	2012		
Gauge ID	Bankfull Elevation (ft)	Zero Elevation (ft)	Year 0	Year 1	Year 2	Year $3^{\text {a }}$	Year 4	Year 5	Total Exceedance by Gauge	Reach
$1^{\text {b }}$	886.12	885.87	N/A	1	1	1	0	0	3	R1 (U/S End)
2	882.04	882.04	N/A	1	1	1	0	0	3	R1A (D/S End)
$3^{\text {b }}$	875.80	875.30	N/A	1	1	1	0	0	3	R1 (U/S NC 9)
$4^{\text {b }}$	878.10	877.96	N/A	1	1	1	0	0	3	R2 (U/S End)
5	876.30	876.26	N/A	0	1	1	0	0	2	R2A (Middle)
6	871.70	871.51	N/A	1	1	1	0	0	3	R2B (D/S End)
$7^{\text {b }}$	869.90	869.14	N/A	1	1	1	0	0	3	R2 (Confluence)
8	866.93	866.67	N/A	0	0	1	0	0	1	R2D (D/S End)
${ }^{\text {a }}$ A bankfull occurrence is documented for each gauge location during Year 3 due to evidence of extreme flooding at the Site. Evidence of flooding indicated that crest gaug completed submerged by flood waters.										

